

This PDF version of the XYBASIC Programming Manual (Rev. 6) was generated
in June 2014. An online version is available as a webpage at

nesssoftware.com/home/mwc/doc/xybasic/xybasic.php
This PDF version generally preserves the layout and typography of the original,
but it does not preserve its pagenation or line filling. The original contains a
comprehensive index, not reproduced here.

XYBASIC PROGRAMMING MANUAL

for process control,
data acquisition and
real time applications

with 8080-based computers

Copyright (C) 1977, 1978, 1979, 1980, 1982

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, Illinois 60614
Telephone: (312) 472-6659

Revision 6, 2/9/82

This document conveys information proprietary to Mark Williams Company. It
shall not be copied, reproduced or duplicated in whole or in part without the
express written permission of Mark Williams Company. XYBASIC is a
trademark of Mark Williams Company.

Mark Williams Company makes no warranty of any kind with respect to this
material, and disclaims any implied warranties of merchantability or fitness for
any particular purpose.

The information contained herein is subject to change without notice.

Printed in U.S.A.

Copyright Notice

The XYBASIC program is protected by copyright. No part of the XYBASIC
program may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permisson of Mark Williams Company.

XYBASIC Programming Manual Page 1

TABLE OF CONTENTS

PREFACE: 5

HOW TO USE THIS MANUAL: 11

Chapter I: XYBASIC TUTORIAL: 12

Section 1: A Quick Introduction to XYBASIC: 12
Initialization Dialog: 13
A First Program: 13

Section 2: Traditional BASIC Commands: 16
Integer and Extended Versions: 16
Numbers: 16
Variables: 17
LET and PRINT: 18
RUN: 20
LIST: 20
Errors and Correcting Your Program: 21
NEW: 23
CLEAR: 23
GOTO and <control-C>: 24
CONT: 25
Control Characters: 26
INPUT: 26
REM and ’: 28
IF / THEN: 29
STOP: 30
END: 31
GOSUB and RETURN: 31
READ, DATA and RESTORE: 33
FOR and NEXT: 35
ON / GOTO and ON / GOSUB: 40
DIM: 41
Multiple Commands Per Line: 43

Section 3: Numeric Formulas: 45
Arithmetic Operators: 45
Conversions: 46
Relations: 47
ABS: 48
SGN: 48
MOD: 48
SQR: 49
LOG: 49
EXP: 50

Page 2 XYBASIC Programming Manual

SIN, COS, TAN and ATN: 50
INT: 51
RND and RANDOMIZE: 51
FRE: 54
UNS: 55
DEF FN: 56
Variable Types: 58

Section 4: Strings: 60
Quoted Strings: 60
String Variables: 60
LEN: 61
Concatenation (+): 62
LEFT$, RIGHT$ and MID$: 63
CHR$: 65
ASC: 65
Relations: 65
String Arrays: 66
String Functions: 67
INSTR: 68
GET$: 69
STR$ and VAL: 70
CLEAR and FRE$: 71

Section 5: PRINT Related Commands: 73
SPC: 73
TAB: 73
POS: 74
CHR$: 75
NULL: 75

Section 6: Input/Output, Saving and Loading Programs: 77
ASSIGN: 77
IOBYTE: 77
SAVE and LOAD: 78

Section 7: Debugging: 81
TRACE and UNTRACE: 81
BREAK and UNBREAK: 83

Section 8: Bit Manipulation and Control Features: 88
Integer Representations: 88
TEST: 88
Logical Operators: 89
SET and RESET: 91
ROTATE, RSHIFT and LSHIFT: 92
BCD and BIN: 94
HEX$, OCT$ and BIN$: 95
MSBYTE, LSBYTE and JOIN: 96

XYBASIC Programming Manual Page 3

GET: 97
DELAY: 99
TIME: 100

Section 9: Machine Control Functions: 101
OUT: 101
IN: 102
PEEK: 102
POKE: 103
SENSE: 104
WAIT: 105

Section 10: Interrupts: 107
ENABLE: 107
DISABLE: 108

Section 11: Machine Language Linkage: 110
CALL: 110
SCALL: 114

Section 12: ROMSQuared Features: 117
Working Space: 117
MOVE: 117
EXEC: 118
FIRST and LAST: 120
Default Initialization Options: 120

Section 13: Errors: 121
TRAP and UNTRAP: 121
Error Types: 122

Section 14: Editing Commands: 126
AUTO: 126
DELETE: 127
EDIT: 128
RENUM: 130

Section 15: CP/M Sequential Disk Commands: 132
Filenames: 132
OPEN: 133
CLOSE: 133
PRINT: 134
MARGIN: 134
INPUT: 135
LINPUT: 135
EOF: 136
DIR: 137
SCRATCH: 137
CLEAR: 137

Page 4 XYBASIC Programming Manual

Chapter II: VERSION DIFFERENCES: 139

Section 1: CP/M Version: 139

Section 2: ISIS-II Version: 140

Section 3: Custom I/O Version: 140
Device Driver Locations: 142
Sample I/O Patch: 143
SAVEd Program Format: 145
Saving and Loading Under Operating Systems: 147

Section 4: INTEL SBC Series Versions: 149

Section 5: AMD 9511 Floating Point Version: 150

Section 6: XYBASIC Compiler: 151
Compiler Operation: 151
Object File Execution: 152

Section 7: XYBASIC Runtime Module: 153

Section 8: Customized OEM Versions: 154

Chapter III: SHORT FORM DESCRIPTION: 155
Section 1: Conventions: 155
Section 2: Direct Commands: 156
Section 3: Traditional BASIC Commands: 156
Section 4: Numeric Formulas: 160
Section 5: String Formulas: 165
Section 6: Input / Output Commands: 167
Section 7: Control Commands: 168
Section 8: Debugging Commands: 170
Section 9: ROMSQuared Commands: 171
Section 10: Editing Commands: 171
Section 11: CP/M Sequential Disk Commands: 172
Section 12: Special Characters: 174

Appendix 1: Initialization Dialog: 177
Appendix 2: Speed and Space Hints: 178
Appendix 3: Reserved Word List: 180
Appendix 4: Character Set: 181
Appendix 5: ASCII Character Equivalents: 183

INDEX: 187

USER REACTION REPORT: 188

XYBASIC Programming Manual Page 5

PREFACE

Congratulations! You are about to discover the unique and powerful properties
of XYBASIC, the only BASIC interpreter specifically designed for process control,
data acquisition and real time applications with 8080-based microcomputer
systems.

Until now, the 8080 (like other computers) could be programmed for most
applications of this type only in assembly language. But even experienced
professional programmers admit that assembly language programming is
awkward and time consuming, and therefore expensive. To develop a program
in assembly language you must (1) write it, (2) load the editor, (3) type in the
program, (4) load the assembler, (5) assemble the program, (6) load the loader,
(7) load the program, (8) execute the program, and (9) debug the program. And
every time you find a bug you must repeat all the steps.

The programming language BASIC, designed for people with no previous
knowledge of computers as well as for the experienced programmer, makes
programs much easier to write and understand. Since the 8080 actually
executes machine language, though, an interpreter is required to translate
BASIC programs; the interpreter permits the computer to execute the given
BASIC commands immediately.

Others have implemented BASIC on the 8080, but until now there have been no
BASIC interpreters specifically designed for process control applications. Now
this vital need has been filled with the introduction of the powerful XYBASIC
interpreter. Almost anyone can use it to create process control programs quickly
and easily -- in as little as one tenth of the time it used to take!

Here’s how it works

All you need is the XYBASIC interpreter, available on floppy disk, paper tape or
EPROM, plus of course an 8080-based computer such as the 8080, Z-80 or
8085 with 14K of memory (8K for Integer XYBASIC) and a console. After you
load XYBASIC into the computer in as little as five seconds and go through a
short initialization dialog, you just type in your program and execute it. When
you find a bug you can change the program and execute it again without
loading any other programs.

Page 6 XYBASIC Programming Manual

Look at all these features

Of course XYBASIC includes the standard BASIC commands, such as READ,
DATA, FOR, NEXT, GOTO, GOSUB, RETURN, ON / GOTO, ON / GOSUB,
PRINT and CONT... plus arrays, user-definable functions and others. XYBASIC
lets you use fast integer arithmetic, and Extended XYBASIC gives you the full
power of floating point and strings.

But XYBASIC has many other features specifically designed for process control,
giving you the power of assembly language programming with the ease of
programming in BASIC.

You can examine and modify any locations in your computer’s memory with
PEEK and POKE. The IN and OUT commands let you perform machine-level
input and output. You can use XYBASIC to look at an individual bit on an
input port with SENSE, or to test a particular bit of a variable with TEST. You
can wait for a particular event to occur with WAIT. And XYBASIC even lets you
link programs with assembly language routines, using CALL and SCALL; if you
already have assembly programs, you can use them from within a XYBASIC
program and pass information to them in a natural way.

XYBASIC also lets you perform bit manipulation functions like ROTATE and
SHIFT which were previously possible only in assembly language. And you can
concatenate variables, split variables into 8-bit values, convert between binary
and BCD representations, and perform logical operations such as AND, OR,
XOR and NOT.

Software interrupt = much more power

XYBASIC offers a software interrupt feature which allows concurrent
processing, effectively multiplying the power of your computer to a substantial
degree. Suppose for example that you are conducting a chemical experiment:
start with 250 cc of solution A, apply heat, and heat to 75 degrees C. With
XYBASIC you can ENABLE an interrupt which will continuously monitor a
digital thermometer hooked up to the experimental apparatus. You can let
XYBASIC continue processing data from the experiment, and automatically
shut down the heat when the solution reaches the desired temperature!

You can use the DELAY command to incorporate real time delays into a
program -- it’s like having a real time clock in your computer.

XYBASIC Programming Manual Page 7

Software test instrument

If you are not certain whether your computer is operating correctly, or if you
add new hardware to your system, you would normally write an assembly
language test program. But a much better way to test is to use XYBASIC in
conjunction with your usual test instruments, like an oscilloscope or voltmeter.
Write a simple XYBASIC program, and use the interactive features of XYBASIC
to help pinpoint problems. Comparing assembly language programming with
XYBASIC is like comparing a manual typewriter with a word processor -- both
can produce a beautiful manuscript, but there’s a world of difference in the
amount of effort needed.

Powerful direct mode

Here’s another difference between assembly language and XYBASIC. Without
the involved process of editing, assembling, loading and running an assembly
language program, you can use the interactive capabilities of XYBASIC’s direct
mode to print the information you want instantly. For example, you can find the
value on an input port or put a value on an output port directly.

Unique one-step debugging

Since XYBASIC includes an editor, you do not need to load it separately;
therefore you can change your program instantly. The additional steps needed
when using a compiler or assembler or debugger are eliminated.

To find and correct errors, just use one of the special debugging commands of
XYBASIC. TRACE lets you trace program execution, showing you every line that
gets executed and printing the name and value of any variables changed.
BREAK lets you set breakpoints on line numbers or variables. If you set a line
number break, XYBASIC prints the line number whenever it is executed, and
then either returns control to you or continues with the next step in your
program. If you set a variable break, XYBASIC prints the variable’s name and
new value whenever it is changed.

Under normal conditions most programmers spend about 40% of their time
writing programs and 60% of their time discovering why the programs do not
work. Using XYBASIC greatly reduces debugging time, since the execution of a
program can be examined line by line; you can pinpoint problems and correct
them immediately.

Page 8 XYBASIC Programming Manual

Available with editing commands

XYBASIC is available in versions which include a line-oriented editor. These
versions allow programs to be modified without retyping entire lines. The AUTO
command lets you enter a program without typing line numbers. The EDIT
command lets you edit a line of the program. And the RENUM command
renumbers your program, or a section of your program, automatically!

ROM SQuared features

Another unique advantage to XYBASIC is its ability to allow several user
programs in memory simultaneously, in either RAM or ROM. You can just use
the EXEC command to switch from one program to another. Once a program is
debugged, you can burn and execute it from PROM. You can even build stand-
alone systems which execute a specific program as soon as you turn on your
computer.

Up to ten times faster

The maximum output of programmers, whether in assembly language or BASIC,
is usually about ten lines of debugged program per hour, even for experienced
programmers. Since each line of XYBASIC corresponds to about ten lines of
assembly language, you can create debugged programs in as little as a tenth of
the time assembly language would require.

Human engineered, thoroughly tested

The careful human engineering of the XYBASIC interpreter assures that anyone
-- even with a minimum of programming experience -- can use it. Experienced
programmers will find it well worth the investment; why continue to do things
the hard way?

XYBASIC is a quality software product and has been thoroughly tested. And of
course it is fully supported.

XYBASIC pays for itself

The XYBASIC interpreter can quickly pay for itself by saving substantial time
and effort and increasing the usefulness of your 8080-based system. To
summarize XYBASIC’s benefits and features, it lets you:

write programs faster and easier...
write more working programs in a given time...
debug programs instantly...

XYBASIC Programming Manual Page 9

conduct fast tests of hardware...
examine or modify memory locations...
input and output values...
direct your computer to wait a specified time...
perform bit manipulation...
link programs with assembly language routines...
have several programs in memory simultaneously...
store programs in either RAM or ROM...
switch between programs with a simple command...
convert between binary and BCD representations...
perform logical operations...
incorporate concurrent processing routines...
and examine any input or output port directly.

Available for standard systems

You can choose a version of XYBASIC which fits your needs precisely. For users
with memory constraints, Integer XYBASIC offers powerful control features
without requiring much memory space. For others, Extended XYBASIC retains
the speed of Integer XYBASIC’s integer arithmetic and the power of its control
features, but offers the additional flexibility of floating point arithmetic and
string manipulation.

XYBASIC is available in versions for the CP/M and ISIS-II disk operating
systems and in versions for the Intellec 8/Mod 80, Intellec MDS, and INTEL
SEC 80 series computer systems. You can also get a version which performs
floating point operations faster by using the AMD 9511 floating point chip.

For users with CP/M systems, XYBASIC is available with additional commands
which allow reading and writing of disk data files. These features allow easy
handling of large data bases.

Another version is easily modified for special systems, letting you patch in I/O
drivers for the specific hardware of your computer system. With this version you
can have XYBASIC in ROM, ready to use as soon as you turn on your computer.
And XYBASIC’s unique ROM SQuared features let you store XYBASIC programs
in ROM too, allowing you to build stand-alone systems with ease.

OEM modifications

In addition to the versions described above, Mark Williams Company can build
a version of XYBASIC which meets your OEM requirements precisely. Call us
today to discuss your needs.

Page 10 XYBASIC Programming Manual

Try it!

If you already know BASIC, you can start programming in XYBASIC right away.
If not, this manual will teach you how to write XYBASIC programs. We think
you will like XYBASIC, and we would greatly appreciate your comments.

XYBASIC Programming Manual Page 11

HOW TO USE THIS MANUAL

This manual is designed both for the novice and for the experienced
programmer. If you have little or no programming experience, you should start
with Chapter I, a tutorial to help you learn XYBASIC simply and painlessly. By
actually typing in the many examples and experimenting with XYBASIC you will
learn how to interact with your computer, and soon you will be writing your
own programs. Once you know XYBASIC you can use the concise descriptions
in Chapter III to refresh your memory about specific features.

A few places in Chapter I refer to material introduced later. These clearly
marked references are provided to make the manual more complete as a
reference source on XYBASIC, and they can be disregarded on first reading.
Some sections refer to features available in some versions of XYBASIC but not
in others. These references should be ignored if they do not apply to your
version.

If you are an experienced programmer already familiar with BASIC, you may
want to skip much of the detail in Chapter I (especially Sections 1 through 5).
Begin instead by reading Chapter III, a concise description of XYBASIC’s
features. To learn more about a command you can refer back to the examples
and description in Chapter I when necessary.

Chapter II describes the available versions of XYBASIC. If you bought the
manual before buying XYBASIC, you can use it to find out which version you
want. Once you have XYBASIC it will give you necessary information about your
version.

Page 12 XYBASIC Programming Manual

Chapter I: XYBASIC TUTORIAL

This tutorial chapter will teach you to use XYBASIC. You will learn a great deal
by actually running the sample programs on your computer. Then you should
try writing similar programs! By interacting with XYBASIC you will quickly
learn how XYBASIC works and how to write your own programs.

The sample programs appear in their entirety, just as you will see them on your
console. To make them stand out from the manual text, they appear in a
different typeface. Both what you type and what XYBASIC types is given; of
course you should not type in the lines typed by XYBASIC.

Section 1: A Quick Introduction to XYBASIC

XYBASIC is a versatile and powerful computer language which lets you perform
complex calculations and solve difficult realtime control problems in either of
two modes.

PROGRAM MODE:
In program mode you can prepare a complex series of numbered commands,
called a program, and then execute it. XYBASIC’s powerful debugging features
make it easy for you to find mistakes and correct your program quickly.

DIRECT MODE:
In direct mode you just type a command and XYBASIC executes it immediately.
The dozens of available commands let you do input and output, examine the
contents of memory, list programs, and perform countless other tasks.

It’s that simple! Using XYBASIC requires no prior computer experience or
special mathematical knowledge. To see just how easy XYBASIC is to use, type
the following lines (each followed by <carriage return>) after loading XYBASIC.

You type: XYBASIC responds:
PRINT 5 + 4 9

OK
LET X = 10 OK
LET Y = 20 OK
PRINT X + Y 30

OK

The OK typed by XYBASIC is a prompt, its way of telling you it is ready for
another command. When used like this, XYBASIC acts just like a pocket
calculator, but it has much more power. You can use XYBASIC to monitor and
control anything from machine tools to chemical experiments to oil pipelines.
And XYBASIC’s powerful features let you write programs faster and get them
running correctly in less time, so XYBASIC can increase your productivity.

XYBASIC Programming Manual Page 13

Initialization Dialog

Before you can use XYBASIC you must load it into your computer’s memory; to
learn how see Chapter II. After you load and start it, XYBASIC leads you
through an initialization dialog to learn about your particular computer system.
First XYBASIC will say

XYBASIC {version} REV n.m
COPYRIGHT 1978, 1979, 1980 BY MARK WILLIAMS COMPANY, CHICAGO

to tell you which {version} (such as CP/M or ISIS-II) and which revision of
XYBASIC you are using. Then it will ask

WIDTH?

You should type a decimal number followed by a <carriage return> (the key
labelled RETURN or CR) to tell XYBASIC the width of your terminal. If you just
type a <carriage return>, XYBASIC assumes your terminal to be 80 columns
wide. Next XYBASIC will ask

END OF MEMORY?

You should respond with the address (in decimal) of the highest usable RAM
location in your computer’s memory, again followed by a <carriage return>. If
you just type a <carriage return>, XYBASIC automatically finds the highest
usable address. In the CP/M and ISIS-II versions it finds the highest address
from the operating system, and in Custom I/O versions it searches memory to
find the highest RAM address. Finally XYBASIC says

xxxxx BYTES FREE
OK

Here xxxxx gives the number of bytes of memory which remain free for program
and variable storage; of course this number will depend on the amount of
memory available in your computer.

A First Program

A program is nothing more than a numbered series of commands or
instructions to the computer. Before typing in a new program you should erase
any existing old program by typing

NEW

Page 14 XYBASIC Programming Manual

followed by a <carriage return>; you must type a <carriage return> to terminate
each line you type. XYBASIC responds with its OK prompt to tell you it has
done the command. Now you can type in your first program; don’t worry yet
about how it works. This program converts numbers to binary representation.
Type:

10 INPUT "NUMBER TO CONVERT?" N
20 FOR I = 15 TO 0 STEP -1
30 PRINT TEST (N, I);
40 NEXT I
50 PRINT
60 GOTO 10

Now check that you typed everything correctly by typing

LIST

XYBASIC will then LIST your program, followed by an OK prompt. If you made a
mistake, retype the bad line and it will be replaced. Now you can run your
program by typing

RUN

Your program will ask you for a number by typing

NUMBER TO CONVERT?

You type 5 followed by <carriage return>, and your program will say

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
NUMBER TO CONVERT?

Type some more values. When you want to stop, hold down the control key
(sometimes labelled CNTL or CTRL or CTL) and type C at the same time.
XYBASIC will say

^C
BREAK IN LINE 10
OK

Congratulations -- you have just run a program!

You probably noticed that every line of your program has a line number, and
that line numbers are in ascending order (the lowest are first and the highest
last). XYBASIC orders lines automatically, so line 10 will be LISTed before line
20 even if you type line 20 before line 10. You also may have noticed that the
program has gaps between line numbers. The lines could have been numbered
1, 2, 3, 4, 5 and 6, but then if you decided to add another line between lines 2
and 3 you would have to retype and renumber lines 3, 4, 5 and 6, rather than

XYBASIC Programming Manual Page 15

just adding line 25.

When you typed NEW, LIST and RUN you were giving XYBASIC commands in
direct mode. Direct commands have no line numbers, and XYBASIC executes
them as soon as the <carriage return> is typed. When you typed in the
program, you were using program mode. Program lines have line numbers, and
XYBASIC adds them to the current program but does not execute them until
you type RUN.

Now let’s look at your first program more closely to see how it works. After you
type RUN, XYBASIC executes the numbered commands one at a time in the
order they appear, unless a command tells it to do otherwise. Line 10 is an
INPUT command, which gets information from your terminal. It gives the
variable named N the value you type. XYBASIC may change the value of a
variable, but its name always remains the same. Lines 20 and 40 create a FOR
loop, causing the commands in between (namely line 30) to be executed
repeatedly. Line 30 uses the PRINT command to print information on your
console. The value it prints is computed by TEST, a function found only in
XYBASIC which enables you to look at the value of a single bit of a variable.
Line 60 is a GOTO command, telling XYBASIC to go back and execute line 10
again instead of executing the following command.

The sections which follow will teach you how to use XYBASIC. You will learn
about the commands used in the program above in much greater detail, and
you will learn about many other commands as well. Have fun!

Page 16 XYBASIC Programming Manual

Section 2: Traditional BASIC Commands

A command is a word which instructs XYBASIC to perform a specific action.
This section describes commands which are common to all BASICs. Before you
learn about commands, though, you will be introduced to the differences
between the Integer and Extended versions of XYBASIC, and to two
fundamental concepts: numbers and variables.

Integer and Extended Versions

XYBASIC is available in two fundamentally different versions, and this manual
describes both. In Integer XYBASIC the numbers you may use must be integers
in the range -32768 to 32767. Integer XYBASIC is ideal for users with memory
size constraints, as well as for those who require fast arithmetic operations and
control features but do not need floating point arithmetic.

Extended XYBASIC retains the speed of Integer XYBASIC’s fast integer
arithmetic and its powerful control features. In addition, it lets you use floating
point numbers in the approximate range 1.7 * 10^-38 to 1.7 * 10^+38, with a
precision of more than six decimal places. Extended XYBASIC also gives you full
floating point functions and extensive string manipulation facilities.

Most of the examples in this manual will work in either the Integer or Extended
version of XYBASIC. Examples which apply to only one version are always noted
clearly. Sections of the manual which apply only to Extended XYBASIC are
marked similarly.

Numbers

In either version of XYBASIC, you can specify integer numbers between -32768
and 32767 in the decimal representation you normally use. You can also specify
integers in hexadecimal and binary representations. & indicates binary
numbers, so &011 is a binary number (equal to 3 decimal). # indicates
hexadecimal numbers, so #1FE is a hex number (equal to 510 decimal).

In Extended XYBASIC you may specify numbers in several additional ways. You
can give a series of decimal digits, with or without a decimal point; for example,
3.14159 and 1000000 are legal numbers. You can precede the number by an
optional + or - sign; for example, -123.1l56 and +2.71828 are also legal
numbers. You can also follow the number with a decimal exponent. The
exponent consists of the letter E, an optional + or - sign, and decimal digits, and
it specifies the power of 10 by which the number is multiplied to obtain its
value. For example, 3E-4 is a number with the value .0003, and 1.5E6 is .a
number with the value 1500000.

XYBASIC Programming Manual Page 17

Variables

XYBASIC lets you perform simple computations which only use constants. For
more complicated tasks, though, you will need to use variables. You can think
of a variable as a box which can contain any arbitrary value; if you have used a
calculator with memory, think of it as a memory register. You refer to a variable
by its name, which can be arbitrarily long, although only its first eight
characters are remembered. The first character must be a letter and other
characters must be letters or digits, but some combinations of letters cannot be
used. A variable name cannot be the same as or contain a reserved word (a
function or command name -- see the list in Appendix 3). The following are legal
XYBASIC variable names.

A
B3
BOY
DOG
LENGTHYNAME (identical to LENGTHYN)

The following are NOT legal variable names.

1A first character not a letter
A# character not a letter or digit
RND reserved word
PORT contains the reserved word OR

XYBASIC’s long variable names can be very helpful to you. You should always
try to choose meaningful variable names. If a variable name reminds you of its
use, you are less likely to use it incorrectly in a program.

XYBASIC initializes all numeric variables to zero. That is, a value of 0 is put in
each variable’s "box" when the variable is first encountered.

XYBASIC allows three different types of variables: floating point, integer, and
string. A variable name may optionally end in !, %, or $. If it ends in a letter or
digit, or in the character !, it represents a floating point variable. The value
stored in a floating point variable may be any number. If the variable name
ends in the character %, it represents an integer variable. The value stored in
an integer variable must be an integer in the range -32768 to 32767. If the
variable name ends in the character $, it represents a string variable. The value
stored in a string variable is a sequence of 0 to 255 characters, as described in
Section 4 below. Additional information about variable types in Extended
XYBASIC is given in Section 3.

Page 18 XYBASIC Programming Manual

LET and PRINT

The LET command is probably the most important in XYBASIC, as it allows you
to give a value to a variable. If you type

LET X = 14

then the value of the variable X becomes 14. To see the value of a variable, you
can just ask XYBASIC to PRINT it:

PRINT X
14
OK
The variable on the left hand side of the equal sign in a LET command can b

LET TEMP = 45
LET PETS = DOGS + CATS

In the second example, the plus sign (+) represents addition, just as in normal
mathematical notation. The command adds the values of the variables DOGS
and CATS, and places the result in the variable PETS.

The word LET in a LET command is optional, so you can just type

PETS = DOGS + CATS

The PRINT command allows XYBASIC to communicate with you. You can PRINT
numbers as well as variables:

PRINT 3
3
OK

Alternatively you may use the abbreviation ? instead of PRINT:

?5
5
OK

You can also PRINT the values of formulas.

Thus:

X = 3
OK
Y = 5
OK

XYBASIC Programming Manual Page 19

PRINT X+Y, X-Y, X*Y, 2*(Y-X)
8 -2 15 4
OK

The minus sign (-) is used in formulas to indicate subtraction or negation, * is
used to represent multiplication, and a comma separates PRINT items into
columns fourteen (eight in Integer XYBASIC) spaces wide. Now try this instead:

PRINT X+Y, X-Y, X*Y, 2*(Y-X)
8 -2 15 4
OK

You can see the semicolon leaves only one or two spaces between values.

In Extended XYBASIC, numbers with magnitudes in the range .01 to 999999
are PRINTed as 1 to 6 decimal digits, with decimal point and sign where
appropriate.

PRINT 1.5E2, -1.5E1, 1.5E0, 1.5E-1
150 -15 1.5 .15
OK

Numbers with magnitudes less than .01 or greater than 999999 are PRINTed as
a decimal fraction in the range 1 to 9.99999, followed by an exponent consisting
of the letter E, a sign, and two decimal digits.

PRINT 1234567, -.0015
1.23457E+06 -1.5E-03
OK

You can also PRINT messages. Try this example:

PRINT "THE SUM OF X AND Y IS"; X+Y
THE SUM OF X AND Y IS 8
OK

You need the quote marks (" ") around the message to allow XYBASIC to
distinguish between message and program. If your console lets you use both
upper and lower case alphabetic characters, you can use lower case within
quoted strings. If you use lower case letters outside of quoted strings, XYBASIC
automatically converts them to upper case.

On most consoles you can beep or ring a bell to audibly prompt the user of your
program by PRINTing a quoted <control-G>. <control-G> is the character typed
by simultaneously depressing the control (sometimes labelled CNTR or CTRL)
and G keys; angle brackets (< >) are used throughout this manual to indicate
nonprinting characters. XYBASIC echoes control characters by typing ^ followed
by the character.

Page 20 XYBASIC Programming Manual

In Extended XYBASIC you can use LET to assign strings to string variables, and
you can use PRINT to print any string, not just quoted strings. A string is
PRINTed in the obvious way: each character of the string is simply PRINTed
successively. More information about strings is given in Section 4.

In CP/M versions of XYBASIC with sequential disk operations, PRINT is also
used to send information to disk data files. More information about this use of
PRINT is given in Section 15.

RUN

In the above examples you typed commands in direct mode and XYBASIC
executed them immediately. For more complicated examples, though, you will
want to enter a sequence of commands, called a program, as a series of
numbered lines. Any line preceded by a line number (from 1 to 65535) is not
executed, but rather is added to the current program; this is called program
(indirect) mode. XYBASIC does not prompt you with OK after you type a
program mode line. To execute the current program, starting at the lowest line
number present, you just type RUN. For example:

IO LET X = 3 * 5
20 LET Y = 5 * 5
30 PRINT X, Y, X * Y
RUN
15 25 375
OK

You can also RUN starting from any line in a program, by giving the desired
starting line number after RUN. Continuing with the above example:

RUN 20
O 25 0
OK

Since line 10 was not executed, the value of X (and of X * Y) is 0 when XYBASIC
executes the PRINT command in line 30.

The RUN command can only be used in direct mode. If you try to use it in a
program, an II (Illegal Indirect) error will occur; as explained below.

LIST

To see the current program you type LIST. Try it with the above example:

LIST
10 LET X = 3 * 5
20 LET Y = 5 * 5

XYBASIC Programming Manual Page 21

30 PRINT X, Y, X * Y
OK

Sometimes you will want to LIST only certain sections of a program. If you type
LIST 10, 20 then all lines from 10 through 20 are LISTed:

LIST 10, 20
10 LET X = 3 * 5
20 LET Y = 5 * 5
OK

Similarly, LIST 20 lists all lines starting from line 20:

LIST 20
20 LET Y = 5 * 5
30 PRINT X, Y, X * Y
OK

And LIST ,10 lists all lines through line 10:

LIST ,10
10 LET X = 3 * 5
OK

You can abort a long LISTing by typing <control-C>, suppress part of it with
<control-O>, or print it on your printer with <control-P>; these options are
explained below.

Errors and Correcting Your Program

Nobody’s perfect, so you will sometimes type lines which XYBASIC does not
understand. It will then respond with an error message, described in detail in
Section 13. The most common error message is SN ERROR, which stands for
SyNtax error and means XYBASIC simply could not understand the line you
gave it. XYBASIC tries to help you find your mistake by typing the line it could
not understand, with a <linefeed> (that is, with the line split in two) roughly
where the error occurred. Note that the <linefeed> is just a guide, and will not
always point out your error. For example:

10 PRANT "HI"
RUN
SN ERROR: 10 PRANT

"HI"
OK

Since you typed PRANT instead of PRINT, XYBASIC did not understand line 10
and typed an error message. To fix your program just retype the line:

Page 22 XYBASIC Programming Manual

10 PRINT "HI"
RUN
HI
OK

If you type the wrong character in a line, you can erase it with the <rubout> key
(labelled RUBOUT or RUB or DEL), written <rub> in the examples below. Any
characters that you erase are echoed by XYBASIC to the console within slashes
(/ and \), and then you can type the correct character. Thus:

10 PRA<rub>/A\INT "R<rub>/R\HI"
LIST
10 PRINT "HI"
OK

You can also erase characters by typing <control-H>. When you do so, XYBASIC
echoes a <control-H> to the console rather than echoing the erased characters
within slashes. On many consoles (including most CRT terminals), <control-H>
backspaces the cursor, allowing you to type corrections "over" your mistakes.

If you make and correct several errors in one line it often becomes unreadable;
then you can type <control-R> to have XYBASIC retype the line.

10 THA<rub>/A\IS IS AT<rub>/T\ TIA<rub>/A<rub>IEST^R
10 THIS IS A TEST

If you want XYBASIC to forget the line you are typing, type <control-U> and
XYBASIC will ignore the line.

10 MUMBLE^U
LIST
10 THIS IS A TEST
OK

You can see that XYBASIC ignored the line with MUMBLE and LISTed the
previous line 10 instead.

If you want to erase a line, just type its line number immediately followed by a
<carriage return>.

10 MUMBLE
LIST
10 MUMBLE
OK
10
LIST

OK

XYBASIC Programming Manual Page 23

NEW

If you have been using one program but are ready to enter another, you should
use the NEW command to erase the old program entirely, as the following
example demonstrates.

10 PRINT 1,2,3
LIST
10 PRINT 1,2,3
NEW
OK
LIST
OK

In addition to erasing your old program, NEW returns you to UNTRACE and
TRAP modes (explained in Sections 7 and 13 below) and disables ENABLEd
interrupts (explained in Section 10 below). Like RUN, NEW is legal only in direct
mode; an II (Illegal Indirect) error will occur if you use it in a program.

CLEAR

You can use the CLEAR command to reset all variables to 0 without changing
your program. For example:

X = 1
OK
CLEAR
OK
PRINT X
0
OK

Whenever XYBASIC executes a NEW command it also CLEARs your variables
automatically.

In Extended XYBASIC, the CLEAR command is also used to change the amount
of space available for string storage. This use of CLEAR is explained in Section
14 below.

In CP/M versions of XYBASIC with sequential disk operations, CLEAR is also
used to tell XYBASIC how may disk data files you need to use simultaneously.
More information about this use of CLEAR is given in Section 15.

Page 24 XYBASIC Programming Manual

GOTO and <control-C>

Most program commands are executed sequentially; that is, XYBASIC executes
the command with the lowest line number when a RUN is issued and then
executes the following lines in increasing order. But you often want to break up
this sequential flow, for example by creating a loop in your program to execute a
number of commands repeatedly. The GOTO command tells XYBASIC to
execute a specified line instead of the next sequential command line. If you say

GOTO 10

then XYBASIC will next execute the command at line 10. The following program
shows how the GOTO command allows you to write a program where the same
instructions are executed repeatedly.

NEW
OK
10 PRINT "A";
15 I = I + 1
20 GOTO 10
RUN
AA

This program is an infinite loop -- it will never stop unless you interrupt it. Now
depress the control (CNTL or CTRL or CNT) key and the C key simultaneously,
called <control-C>, and XYBASIC will respond

^C
BREAK IN LINE 10 (or perhaps 15 or 20)
OK

Here lines 10, 15 and 20 are executed repeatedly, and are therefore called a
loop; line 20 created the loop by telling XYBASIC to execute line 10 again. Loops
are one of the most essential and powerful constructs in any programming
language.

The next example calculates the squares of consecutive whole numbers; again,
type <control-C> to stop it.

NEW
OK
10 I = 0
20 PRINT I, I * I
30 I = I + 1
40 GOTO 20
RUN
0 0

XYBASIC Programming Manual Page 25

1 1
2 4
3 9
4 16
5 25
6 36
^C
BREAK AT LINE 20
OK

If your program tries to GOTO a line number which does not exist, a US
(Undefined Statement) error will occur.

CONT

In the example above you learned how to interrupt program execution with
<control-C>. After typing <control-C> you can ask XYBASIC to LIST your
program or to PRINT the values of variables. For example,

NEW
OK
10 PRINT "A";
1S I = I + 1
20 GOTO 10
RUN
AA
AA^C
BREAK AT LINE 15
OK
PRINT I
106

OK

Then you can CONTinue execution from where it was interrupted:

CONT
AAAAAAAAAAAAAAAAAAAAAAAAAA^C
BREAK AT LINE 10
OK

and to exit type <control-C> again. Like NEW and RUN, CONT is legal only in
direct mode; an II (Illegal Indirect) error occurs if you use it in a program.

Sometimes it is impossible for XYBASIC to CONTinue, for example if you
<control-C> out of a program and then edit it, or if you try to continue after an
error. Under such circumstances a CN (can’t CoNtinue) error will occur. Try it
with the program above:

Page 26 XYBASIC Programming Manual

RUN
AAAAAAAAAAAAAAAAAAAAA^C
BREAK AT LINE 15
OK
15 PRINT "B";
CONT

CN ERROR: CONT

OK

Control Characters

XYBASIC has several additional characters which control program execution.
Typing <control-S> stops execution completely and waits until you type
<control-Q> or another <control-S> before resuming. This is useful when you
want to examine part of a long LISTing or a TRACE (described in Section 7) on a
CRT console.

On the other hand, <control-O> actually suppresses console output; execution
of your program continues, but output is not sent to the console until the next
<control-O> is typed, or until an error occurs or the program returns to direct
mode. By repeatedly toggling <control-O> you can watch a TRACE of your
program intermittently without the time-consuming delay of writing all the trace
information on the console.

If you have a lineprinter as the LST device of your computer system (as
described in Section 6 below), you can have output printed on it by typing
<control-P>. As with <control-O>, typing another <control-P> cancels the effect
of the first.

If you are finished with XYBASIC and want to return to the operating system of
your computer, just type <control-B> (for Bye) and XYBASIC will return you to
the system.

INPUT

The INPUT statement allows your program to get data from the console while
running, so the program can request information and then use it. You might for
example say

10 INPUT A

When the INPUT statement is executed it prompts you by printing a ’?’ (question
mark) on the console, and then waits for you to type in a value. After you enter
the value and type a <carriage return> (so XYBASIC knows you are done), the

XYBASIC Programming Manual Page 27

value you typed is assigned to the variable A. To see INPUT work try the
following program, which prints the square of the input value.

NEW
OK
10 INPUT A
20 PRINT A * A
30 GOTO 10
RUN
? 10
100
? 99
9801
? 5
25
? ^C
BREAK AT LINE 10
OK

To exit from this program type <control-C>and you will return to direct mode.

INPUT allows you to prompt the user with a message instead of just a question
mark. Try changing the above program as follows:

10 INPUT "NUMBER TO SQUARE" A
RUN
NUMBER TO SQUARE? 15
225
NUMBER T0 SQUARE? 3
9
NUMBER TO SQUARE? ^C
BREAK AT LINE 10
OK

You can also INPUT more than one variable:

10 INPUT A,B,C

will wait for three values separated by a comma. The following program PRINTs
the sum of the values typed in.

NEW
OK
10 INPUT A,B,C
20 PRINT A+B+C
30 GOTO 10
RUN
? 1,2,3
6

Page 28 XYBASIC Programming Manual

? 59,129,-20
168
? ^C
BREAK AT LINE 10
OK

If you make a mistake entering data, XYBASIC will say REDO and reprompt you
with another ?. If you enter too much data, XYBASIC will say EXCESS
IGNORED and disregard the extra values. INPUT is legal only in program mode;
an ID (Illegal Direct) error will occur if you use it in direct mode.

In Extended XYBASIC you can also use INPUT to get strings and assign them to
string variables. The strings you type may be either quoted or unquoted, and
may contain both upper and lower case characters. More information on strings
is given in Section 4.

In CP/M versions of XYBASIC with sequential disk operations, INPUT is also
used to read information from disk data files. More information about this use
of INPUT is given in Section 15.

REM and ’

The REM command and special character ’ allow you to explain your program
with comments. REMarks allow you to note what a program is doing, but have
no meaning to XYBASIC. When BASIC encounters a REM it ignores everything
to the right of it on the same line. For example:

NEW
OK
10 REM THIS PROGRAM DEMONSTRATES REM
20 PRINT "REM TEST"
30 REM THAT’S ALL THERE IS TO IT
RUN
REM TEST
OK

You may find it more convenient to use ’ instead of REM to put a comment on
the same line as the command to which it applies. ’ has the same effect as REM,
but it can appear on a line right after any command. Again, XYBASIC ignores
whatever follows ’ on the line.

NEW
OK
10 I = I + 2 ’USE EVEN VALUES ONLY
20 J = J + I ’SUM FOR AVERAGE
30 PRINT J ’THIS IS A REMARK
RUN
2

XYBASIC Programming Manual Page 29

OK

XYBASIC really ignores whatever follows a REM or ’. In the following example
XYBASIC does not execute either the PRINT or the GOTO.

NEW
OK
10 REM PRINT "THIS NEVER GETS PRINTED"
20 ’GOTO 10 : AND THIS NEVER GETS EXECUTED
RUN
OK

IF / THEN

On many occasions you want a program to make a decision. For example, you
might wish to reject a printed circuit board you are testing if a test voltage is too
high. The IF / THEN command allows you to make such decisions. An example
is:

IF A = 5 THEN 100

The IF command has two parts, an IF part (IF A = 5 in the example) and a
THEN part (THEN 100). The IF part contains a logical formula (A = 5), and the
THEN part contains a line number (100) or a command. When XYBASIC
executes an IF command, first it evaluates the logical formula. If it is true, the
THEN part is executed (by doing a GOTO to the given line number or executing
the given command). If the logical formula is false, the line following the IF
command line is executed. Try the following program, a simple number
guessing game using IF / THEN.

NEW
0K
10 INPUT "YOUR GUESS" A
20 IF A < 5 THEN PRINT "TOO SMALL"
30 IF A > 5 THEN PRINT "TOO BIG"
40 IF A <> 5 THEN 10
50 PRINT "YOU GUESSED IT!"
RUN
YOUR GUESS? 7
TOO BIG
YOUR GUESS? 4
TOO SMALL
YOUR GUESS? 5
YOU GUESSED IT!
OK

Page 30 XYBASIC Programming Manual

In line 10, XYBASIC requests a number A from the user. Line 20 checks
whether A < 5, and PRINTS an appropriate message if it is. Similarly, line 30
checks whether A > 5 and PRINTS an appropriate message. Line 40 returns to
line 10 for another guess if the guess was wrong. Notice that the IF command of
line 40 lets the program loop until a given condition (namely, that the guess is
correct) is satisfied, unlike previous examples where loops continued execution
until interrupted with <control-C>.

In the logical formula you may use XYBASIC’s relational operators, namely:
= equal
> greater than
< less than
<= less than or equal to
>= greater than or equal to
<> not equal

You may also use XYBASIC’s logical operators, namely:
AND logical AND
OR logical inclusive OR
XOR logical exclusive OR
NOT logical negation

The following examples give an idea of the wide variety of logical formulas you
can use in IF commands.

IF (X AND Y)=0 THEN 100
IF X+Y*E = 4/Z THEN PRINT "GOTCHA"
IF A+B = 14 AND C*D = 12 OR Y=Z THEN J=K

STOP

The STOP command interrupts execution of your program, prints the line
number at which the STOP occurs, and returns you to direct mode. For
example:

NEW
OK
10 PRINT "DONE"
20 STOP
RUN
DONE
BREAK AT LINE 20
OK

You can use STOP to determine whether you have reached a given point in your
program, and then CONTinue execution after the STOP. You may find the
powerful BREAK commmand described in Section 7 more useful for this
purpose, though.

XYBASIC Programming Manual Page 31

END

The END command tells XYBASIC to return to direct mode. An END command
can occur anywhere in your program but need not occur at all -- XYBASIC will
return to direct mode after executing the program’s highest line number. Try
this:

NEW
OK
10 PRINT "A"
20 GOTO 40
30 END
40 PRINT "B"
50 GOTO 30
RUN
A
B

OK

Now type CONT and notice that you can CONTinue after an END:

CONT
B
OK

GOSUB and RETURN

When writing programs in any language there are often several places where the
program must perform the same task. The GOSUB and RETURN commands in
XYBASIC allow you to enter and return from a subroutine (or subprogram)
which does such a task. The subroutine is written only once, but may be used
from many different points in your program. Besides conserving space (i.e. the
memory used to store your program), subroutines make your programs easier to
write, understand and maintain.

Like GOTO, GOSUB tells XYBASIC to execute the command on a specified line
instead of the command following the GOSUB. But GOSUB also has a powerful
RETURN feature. When the next RETURN command is executed, XYBASIC
RETURNS to the command following the GOSUB. Therefore you can enter a
subroutine from different places in your program, and RETURN to the
appropriate command each time. The following example uses the TRACE feature
described in Section 7 to demonstrate the flow of control with GOSUB and
RETURN commands.

Page 32 XYBASIC Programming Manual

NEW
OK
10 TRACE
20 PRINT"BEGINNING";
30 GOSUB 100
40 PRINT"MIDDLE";
50 GOSUB 100
60 PRINT"END";
70 UNTRACE
80 END
100 PRINT "SUBROUTINE";
110 RETURN
RUN
[20 PRINT "BEGINNING";] BEGINNING
[30 GOSUB 100]
[100 PRINT "SUBROUTINE";] SUBROUTINE
[110 RETURN]
[40 PRINT "MIDDLE";] MIDDLE
[50 GOSUB 100]
[100 PRINT "SUBROUTINE";] SUBROUTINE
[110 RETURN]
[60 PRINT "END";] END
[70 UNTRACE]
OK

After executing the TRACE command in line 10, XYBASIC prints the bracketed
line number and contents of each line it executes. You can see that executing
line 110 RETURNs control first to line 40 and then to line 60.

If your program executes a RETURN without a corresponding GOSUB, an RG
(Return without Gosub) error will occur, as XYBASIC does not know where to
return. If your program GOSUBs to a nonexistent line number, a US (Undefined
Statement) error will occur.

Each time XYBASIC executes a GOSUB it uses memory space to store
information about where to RETURN, and the used space is reclaimed when the
corresponding RETURN is executed. If insufficient memory space remains, an
OM (Out of Memory) error will occur. The FRE example in Section 3 below
demonstrates how memory space is used and later reclaimed.

The following example uses GOSUB and RETURN to calculate the greatest
common divisor (G.C.D.) of three numbers, i.e. the largest number which
divides each with no remainder. First it finds the G.C.D. of X and Y, then finds
the G.C.D. of that value and Z; the result is easily shown to be the G.C.D. of X,
Y and Z.

NEW
OK
10 INPUT "THREE POSITIVE NUMBERS" X, Y, Z

XYBASIC Programming Manual Page 33

20 GOSUB 100 ’G.C.D. 0F X AND Y RETURNED IN Y
30 LET X = Z
40 GOSUB 100 ’G.C.D. OF Z AND G.C.D. RETURNED IN Y
50 PRINT "G.C.D. ="; Y
60 GOTO 10
100 ’SUBROUTINE RETURNS G.C.D. OF X AND Y IN Y
110 IF X >= Y THEN 150
120 TEMP = X ’SWITCH TO FORCE X >= Y
130 X = Y
140 Y = TEMP
150 TEMP = X MOD Y
160 IF TEMP <> 0 THEN 130 ’KEEP TRYING
17D RETURN ’DONE WHEN X MOD Y = O
RUN
THREE POSITIVE NUMBERS? 10,35,95
G.C.D. = 5
THREE POSITIVE NUMBERS? 22,121,999
G.C.D. = 1
THREE POSITIVE NUMBERS? ^C
BREAK AT LINE 10
OK

The subroutine to compute the G.C.D. of X and Y starts at line 100, and is
called from lines 20 and 110. Executing the RETURN of line 170 transfers
control to the statement following the GOSUB, i.e. to line 30 or line 50. The
remainder operator MOD used in line 150 is explained in Section 3.

READ, DATA and RESTORE

The DATA command lets you insert tables of data into your program, and the
READ command gives you access to this data. Execution of a READ command
READs the next value from a DATA command and assigns it to a specified
variable. Try the following example:

NEW
OK
10 READ X
20 PRINT x;
40 DATA 1, 2, 3, 4
RUN
1
OK

If you run out of DATA values, an OD (Out of Data) error occurs. Try adding the
following line to the above example.

Page 34 XYBASIC Programming Manual

30 GOTO 10
RUN
1 2 3 4
OD ERROR: 10 READ X

OK

To read the same DATA again (and not get the OD error) you can use the
RESTORE command to start READing from the first DATA item again. Now
make the following addition to the program:

25 IF X = 4 THEN RESTORE
RUN
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 ^C
BREAK AT LINE 25
OK

To exit from this program type <control-C>. Whenever XYBASIC executes a RUN
or a NEW it also automatically RESTOREs.

If you include a line number after RESTORE, XYBASIC will READ the next
DATA item after the specified line number. This allows you to select which of
several DATA areas you wish to read from. Continuing with the above example:

25 IF X = 8 THEN RESTORE 50
50 DATA 5, 6, 7, 8
RUN
1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 ^C
BREAK AT LINE 25
OK

In Extended XYBASIC you can also use READ to assign string DATA to string
variables. The string DATA may be either quoted or unquoted, and may contain
both upper and lower case characters. More information about strings is given
in Section 4.

The DATA command can only be used in program mode; an ID (Illegal Direct)
error occurs if you use it in direct mode.

The next example shows how you can use the DATA statement to hold
information used in controlling a process.

Example:
Microx Corporation manufactures microcomputer products. One of their highly
advanced machines requires its operator to push one of two buttons a specified
number of times. Microx uses the following XYBASIC program to instruct the
operator.

XYBASIC Programming Manual Page 35

NEW
OK
10 PRINT "START OF BUTTON INSTRUCTIONS, HOPE YOU’RE READY!"
20 GOSUB 200
30 READ X
40 PRINT "PUSH THE RED BUTTON"; X; "TIMES"
50 GOSUB 200
60 READ Y
70 PRINT "PUSH THE YELLOW BUTTON"; Y; "TIMES"
80 GOSUB ZOO
90 I = I + 1
100 IF I < 3 THEN 30 ’LOOP 3 TIMES
110 PRINT "ALL DONE";
120 END
150 DATA 2,7,13,1,10,21
200 ’SUBROUTINE TO PROMPT USER
210 INPUT "TYPE 1 TO CONTINUE" N
220 IF N <> 1 THEN 210
230 RETURN
RUN
START OF BUTTON INSTRUCTIONS, HOPE YOU’RE READY!
TYPE 1 TO CONTINUE? 1
PUSH THE RED BUTTON 2 TIMES
TYPE 1 TO CONTINUE? 1
PUSH THE YELLOW BUTTON 7 TIMES
TYPE 1 TO CONTINUE? 1
PUSH THE RED BUTTON 13 TIMES
TYPE 1 TO CONTINUE? 1
PUSH THE YELLOW BUTTON 1 TIMES
TYPE 1 TO CONTINUE? 1
PUSH THE RED BUTTON 10 TIMES
TYPE 1 TO CONTINUE? 1
PUSH THE YELLOW BUTTON 21 TIMES
TYPE 1 TO CONTINUE? 1
ALL DONE
OK

This program reads the button pushing information from the DATA statement of
line 150. When lines 30 and 60 are executed they READ the next piece of DATA
(first 2 to X, then 7 to Y, then 13 to X, etc.). The counter I prevents an OD error.

FOR and NEXT

The FOR and NEXT commands allow you to execute a group of commands
several times, that is to write controlled loops. The FOR and NEXT construction
greatly simplifies XYBASIC programming by doing some of the programmer’s
work automatically, making programs both easier to write and easier to
understand. To see how FOR and NEXT work, first look at the following

Page 36 XYBASIC Programming Manual

program using IF / THEN and GOTO.

NEW
OK
10 REM PROGRAM TO PRINT SQUARES OF NUMBERS
20 LET I = 1 ’INITIALIZE COUNTER TO 1
30 IF I > 10 THEN 70 ’DONE AFTER 10
40 PRINT "THE SQUARE OF"; I; "IS"; I * I
50 LET I = I + 1 ’INCREMENT COUNTER
60 GOTO 30 ’TRY NEXT VALUE
70 END
RUN
THE SQUARE OF 1 IS 1
THE SQUARE OF 2 IS 4
THE SQUARE OF 3 IS 9
THE SQUARE OF 4 IS 16
THE SQUARE OF 5 IS 25
THE SQUARE OF 6 IS 36
THE SQUARE OF 7 IS 49
THE SQUARE OF 8 IS 64
THE SQUARE OF 9 IS 81
THE SQUARE OF 10 IS 100
OK

This program just PRINTs the squares of numbers between 1 and 10. Line 20
sets I to 1, and the IF command in line 30 tests whether I is greater than 10;
execution ENDs at line 70 if it is. Line 40 PRINTs the desired information, line
50 increments I, and the GOTO of line 60 defines the loop. The same program
can be written in a simpler and clearer way using FOR and NEXT:

NEW
OK
10 REM PROGRAM TO PRINT SQUARES OF NUMBERS
20 FOR I=1 TO 10
40 PRINT "THE SQUARE OF"; I; "IS"; I * I
60 NEXT I
70 END
RUN
THE SQUARE OF 1 IS 1
THE SQUARE OF 2 IS 4
THE SQUARE OF 3 IS 9
THE SQUARE OF 4 IS 16
THE SQUARE OF 5 IS 25
THE SQUARE OF 6 IS 36
THE SQUARE OF 7 IS 49
THE SQUARE OF 8 IS 64
THE SQUARE OF 9 IS 81
THE SQUARE OF 10 IS 100
OK

XYBASIC Programming Manual Page 37

Here the FOR command of line 20 first sets I to 1, and then tests whether I is
less than or equal to 10. Since it is, the command in line 40 is executed. The
NEXT command in line 60 then increments I by 1 and again tests whether I is
less than or equal to 10. If it is, the command after the FOR is executed
(namely, line 40); if not, the command after the NEXT is executed (namely, line
70). You should notice that this program does the same thing as the previous
example, but without using IF / THEN or GOTO.

You can use NEXT without specifying the FOR variable, and let XYBASIC find
the most recent FOR automatically:

60 NEXT

A variation of the FOR command lets you use an increment other than 1. Try
changing the example given above:

20 FOR I = 1 TO 10 STEP 2
RUN
THE SQUARE OF 1 IS 1
THE SQUARE OF 3 IS 9
THE SQUARE OF 5 IS 25
THE SQUARE OF 7 IS 49
THE SQUARE OF 9 IS 81
OK

Notice that now each NEXT I increments I by 2 instead of 1. You can use any
number, variable or formula to specify the increment with STEP, but the value
of the increment is computed only once (when the FOR command is executed).
Similarly, the value of the bound specified by TO is computed only once. If the
value of the increment is negaive, XYBASIC steps backwards through the
values:

20 FOR I = 10 TO 1 STEP -2
RUN
THE SQUARE OF 10 IS 100
THE SQUARE OF 8 IS 64
THE SQUARE OF 6 IS 36
THE SQUARE OF 4 IS 16
THE SQUARE OF 2 IS 4
OK

Sometimes you might make a mistake in constructing a FOR loop and try to
execute a NEXT command without a corresponding FOR. If you do, a NF (Next
without For) error will occur, as shown in the following example.

NEW
OK
10 PRINT "NF EXAMPLE"

Page 38 XYBASIC Programming Manual

20 NEXT I
RUN
NF EXAMPLE

NF ERROR: 20 NEXT
I

OK

The variable you use to control a FOR loop must be a simple numeric variable
such as I; an SN (SyNtax) error will occur if you try to use an array element
such as A(I) instead.

You will frequently want to nest one FOR loop within another, as in the
following example.

NEW
OK
10 FOR I = 1 TO 5
20 FOR J = I TO 5
30 PRINT I, J, I*J
40 NEXT J
50 NEXT I
RUN
1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 2 4
2 3 6
2 4 8
2 5 10
3 3 9
3 4 12
3 5 15
4 4 16
4 5 20
5 5 25
OK

Because this construction is so common, XYBASIC lets you combine successive
NEXT commands into one. Here you can replace lines 40 and 50 with

40 NEXT J, I
50

A single NEXT can specify as many variables as there are corresponding FOR
commands. You must be careful, however, to specify the correct order of nesting
(NEXT J, I rather than NEXT I, J in the example), or a NF error will occur when

XYBASIC Programming Manual Page 39

XYBASIC encounters the wrong variable name.

If the conditions of a FOR command are initially false (namely, the initial value
is greater than the bound when the increment is positive, or less than the
bound when the increment is negative), the body of the FOR loop is not
executed. Instead, XYBASIC searches through the program for the matching
NEXT and executes the following command. For example:

NEW
OK
10 FOR I = 1 TO 0
20 PRINT "THIS NEVER GETS PRINTED"
30 NEXT I
40 PRINT "END OF LOOP"
RUN
END OF LOOP
OK

If XYBASIC is unable to find the matching NEXT in this case, a FR (FoR) error
will occur.

In Extended XYBASIC you can write FOR loops which use either integer
variables or floating point variables to control the loop. Since integer arithmetic
is considerably faster than floating point arithmetic, you can often speed up a
program by replacing floating point FOR commands with integer FOR
commands. For example, the command

FOR I = 5 T0 6.5 STEP .03

could be replaced by

FOR I% = 500 TO 650 STEP 3

Like GOSUB, FOR uses memory space to store information about the FOR loop,
and the space is reclaimed when you exit from the loop. An OM (Out of Memory)
error will occur if insufficient space remains.

The following example shows how useful FOR loops can be in printing tables.

Example:
Charles Squaro works for a company which makes cubic boxes with sides
between 5 and 30 inches. He wants to know how much wood is used and the
resulting volume for each type of box, and wants a table he can refer to when
ordering. Since the volume of a cube is the cube of its side, and the surface area
of a cube is six times the square of its side, the following program prints the
desired information.

Page 40 XYBASIC Programming Manual

NEW
OK
10 PRINT "SIZE", "AREA", "VOLUME"
20 FOR I = 5 TO 30
30 PRINT I, I*I*6, I*I*I
40 NEXT I

ON / GOTO and ON / GOSUB

The ON / GOTO and ON / GOSUB commands let you use the value of a
variable or formula to choose which of a group of tasks to perform. For example,
execution of the command

ON VAR GOTO 10,20,30,40

transfers control to line 10 if the value of VAR is 1, to line 20 if the value of VAR
is 2, etc. In general control is transferred to the Nth line number in the list, with
the value of N determined by the given formula. Try the following program,
which uses the ON / GOTO command to type a message appropriate to the
number you supply.

NEW
OK
10 INPUT "WHICH NUMBER (1-4) DO YOU WANT" X
20 ON X GOTO 30, 50, 70, 90
30 PRINT "ONE"
40 END
50 PRINT "TWO"
60 END
70 PRINT "THREE"
80 END
90 PRINT "FOUR"
100 END
RUN
WHICH NUMBER (1-4) DO YOU WANT? 3
THREE
OK

Of course the ON command of line 20 could be replaced with IF commands, but
the program is much simpler when you use ON instead:

20 IF X = 1 THEN 30
22 IF X = 2 THEN 50
24 IF X = 3 THEN 70
26 IF X = 4 THEN 90
28 STOP

XYBASIC Programming Manual Page 41

The ON / GOSUB command works similarly to ON / GOTO, but executes a
GOSUB to the subroutine at the given line number instead of a GOTO. For
example:

ON (X+Y) / 3 + 1 GOSUB 100, 200, 300

If the value of the given formula is less than or equal to zero, or is larger than
the number of line numbers in the list, an ON error will occur.

In Extended XYBASIC the value of the formula is automatically truncated to the
least integer less than or equal to its value, as described under Conversions in
Section 3.

DIM

In XYBASIC you can use arrays as well as simple variables. An array is a
collection of simple variables sharing the same name but distinguished by an
index or subscript. The DIM command tells XYBASIC to set aside space for an
array. If you say

DIM A(7)

then XYBASIC will create space for a one dimensional array named A with eight
elements; the allowed subscripts of A are 0 through 7. You can think of A as an
indexed series of simple variables, as illustrated by the following diagram.

A(0) A(1) A(2) A(3) A(4) A(5) A(6) A(7)

Similarly, if you say

DIM B(2,5)

XYBASIC will create space for a two dimensional array named B with 3 * 6 = 18
elements. You can think of B as a rectangular collection of variables, with the
first subscript specifying the row and the second specifying the column of a
variable:

B(0,0) B(0,1) B(0,2) B(0,3) B(0,4) B(0,5)
B(1,0) B(1,1) B(1,2) B(1,3) B(1,4) B(1,5)
B(2,0) B(2,1) B(2,2) B(2,3) B(2,4) B(2,5)

XYBASIC lets you define arrays with any number of subscripts, lets you define
each dimension with any numeric formula, and lets you use a single DIM
command to DIMension more than one array. In Extended XYBASIC you can
also define arrays of any type -- floating point, integer, or string. For example,

Page 42 XYBASIC Programming Manual

DIM S$ (I), B (2, I * J), X% (2, 2, 2, 2)

tells Extended XYBASIC to set aside space for a one dimensional string array S$
with I + 1 elements, a two dimensional floating point array B with 3 * (I * J + 1)
elements, and a four dimensional integer array with 3 * 3 * 3 * 3 = 81 elements.
More information about string arrays is given in Section 4.

The following example demonstrates how array elements may be manipulated.

NEW
OK
10 DIM A(10)
20 A(O) = 1
30 A(1) = 1
40 FOR I = 2 TO 10
50 A(I) = A(I-1) + A(I-2)
60 NEXT I
70 FOR I = 0 TO 10
80 PRINT A(I);
90 NEXT I
RUN
1 1 2 3 5 8 13 21 34 55 89
OK

Here line 10 is a DIMension statement, creating an array named A with 11
elements. After each element is given an initial value, the FOR loop starting at
line 70 prints the values.

The following example uses a two-dimensional array. First each element is given
an initial value computed from its subscripts, then the array is printed.

NEW
OK
10 DIM A(5,4)
20 FOR I = 0 TO 5
30 FOR J = 0 TO 4
40 A(I,J) = 10*I + J
50 NEXT J,I
60 FOR I = 0 TO 5
70 FOR J = 0 TO 4
80 PRINT A(I,J),
90 NEXT J
100 PRINT
110 NEXT I
RUN
0 1 2 3 4
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34

XYBASIC Programming Manual Page 43

40 41 42 43 44
50 51 52 53 54
OK

If you use an array element in your program before executing a DIM statement
to define the array, a SN (SyNtax) error will occur because XYBASIC will not
understand the subscript. If the value of a subscript expression is less than zero
or greater than the size of the array declared in its DIM statement, a BS (Bad
Subscript) error will occur.

In Extended XYBASIC, any floating point values you use to specify array
DIMensions or subscripts will be truncated to integer values automatically, as
described under Conversions in Section 3.

Multiple Commands Per Line

The special character : (colon) lets you include more than one command on a
single line by just putting a : between each command. For example, you could
rewrite the ON / GOTO example given above as follows:

NEW
OK
10 INPUT "WHICH NUMBER (1-4) DO YOU WANT" X
20 ON X GOTO 30, 50, 70, 90
30 PRINT "ONE" : END
50 PRINT "TWO" : END
70 PRINT "THREE" : END
90 PRINT "FOUR" : END
RUN
WHICH NUMBER (1-4) DO YOU WANT? 2
TWO

OK

Writing several commands on one line not only conserves memory space (see
Appendix 2), but also may help make your program more readable. If you need
to pass information to a subroutine, writing the necessary LET commands on
the same line as the GOSUB allows you to see just what your program is doing,
as illustrated by the logical operator program in Section 8.

XYBASIC even lets you write FOR loops in direct mode, using : . Try it:

FOR I = 1 TO 10 : PRINT I * I; : NEXT I
1 4 9 16 25 36 49 64 81 100
OK

Page 44 XYBASIC Programming Manual

When the logical formula of an IF / THEN command is false, XYBASIC executes
the next line of the program rather than the next command. This allows you to
write several commands on the same line as the IF / THEN, using :, and
execute them only if the condition is true. For example,

IF X < 0 THEN X = -X : GOSUB 1000 : GOTO 100

will replace X by -X, execute the subroutine at line 1000, and GOTO line 100 if
X < 0, but will do nothing if X >= 0.

REMarks can be terminated only by <carriage return>, not by :. Of course you
may write REMarks after a :, although using ’ is more convenient.

XYBASIC Programming Manual Page 45

Section 3: Numeric Formulas

You can express numeric values in XYBASIC with numbers and variables, but
very frequently you will want to use more complicated formulas. You can build
formulas with operators and functions. The wide variety of specialized numeric
operators and functions available in XYBASIC is detailed in this section.

Arithmetic Operators

In XYBASIC you can use the arithmetic operators + (addition), - (subtraction or
negation), * (multiplication), / (division), MOD (remainder), and JOIN
(concatenation, described in Section 8 below). To use an operator, just write it
between two numbers, variables or formulas. For example, to add 1 to 2 you
write 1 + 2; to divide the value of I by 2 you write I / 2.

In Integer XYBASIC, / represents integer division, so I / 2 gives the integer part
of the result and I MOD 2 gives the remainder.

Extended XYBASIC allows two different division operators: / represents floating
point division (so 3 / 2 returns the value 1.5) , and \ represents integer division
(so 3 \ 2 returns 1, the integer part of 3 / 2). In either version, dividing any
quantity by 0 will produce an OV (OVerflow) error.

Extended XYBASIC also allows you to use the exponentiation operator ^, which
returns its first argument to the power given by its second argument. For
example, 2 ^ 3 returns 8. A FC (Function Call) error occurs if the first argument
is negative and the second is not an integer.

If the result of an arithmetic operation is too small or too large, an OV
(OVerflow) error will occur. This happens when a result is not in the range
-32768 to 32767 in Integer XYBASIC, or not in the range -1 .7 * 10^38 to 1 .7 *
10^38 in Extended XYBASIC.

A formula can be any legal combination of numbers, variables, operators and
functions, but you must be aware of the order in which computations will be
performed. In normal mathematical usage the formulas 1 + 2 * 3 and 2 * 3 + 1
are both considered to have the value 7 (not 9 or 8) , and XYBASIC uses similar
conventions to evaluate unparenthesized formulas. You can think of operators
as being arranged in the following order:

- (negation)
JOIN

^ [Extended]
*, /, MOD, \ [Extended]

+, - (subtraction)

Page 46 XYBASIC Programming Manual

Operators which occur higher on this list are performed first; when two
operators are on the same level, XYBASIC evaluates from left to right. If you
want to perform operations in a specific order, you can just enclose the
subformulas you want evaluated first within parentheses. The examples below
are legal formulas, with the fully parenthesized version indicating the order of
operator evaluation.

3 + X * - 5 3 + (X * (-5))
N1 + 2 * Y / Z N1 + ((2 * Y) / Z
(N1 + 2) / Y JOIN Z (N1 + 2) / (Y JOIN Z)

Because integer arithmetic is faster than floating point arithmetic, Extended
XYBASIC uses integer arithmetic whenever possible. You can often both
conserve memory space and increase the execution speed of your program by
using integer variables to store values which you know will always be integers
in the range -32767 to 32767.

Conversions

As noted in Section 2, you can use both integer and floating point numeric
variables in Extended XYBASIC. Because XYBASIC converts between these two
variable types automatically, you can write programs in the most natural way.

Of course any integer value can be converted to an equivalent floating point
value. Whenever XYBASIC needs to convert a floating point value to an integer,
it truncates it to the largest integer less than or equal to the floating point
value. For example:

NEW
OK
10 I% = 2.5
20 J% = -3.1
30 PRINT I%, J%
RUN
2 -4
OK

Here XYBASIC converted the value 2.5 to the integer 2 and the value -3.1 to the
integer -4. An OV (OVerflow) error occurs if the floating point value is less than
-32767 or greater than 32767.

Conversions are also performed automatically whenever a command or function
requires an integer argument. For example, the value in an ON command, the
dimensions in a DIM command and the subscripts of an array variable
reference must be integers, and are converted if they are floating point values.

Since string values cannot be converted to numeric values, a TM (Type
Mismatch) error occurs whenever XYBASIC finds a string value where it expects
a numeric value, or vice versa. For example:

XYBASIC Programming Manual Page 47

I = "DOG"
TM ERROR: I = "DOG"

OK
S$ = 1.5
TM ERROR: S$ = 1.5

OK

In the first example the string "DOG" could not be assigned to the floating point
variable I; in the second example the numeric value 1.5 could not be assigned
to the string variable S$. The functions CHR$, ASC, STR$ and VAL convert
between strings and numeric values, and are discussed in detail in Section 4.

Relations

In writing IF commands you use logical formulas, which have a value of true or
false. You can build logical formulas by using the arithmetic relations < (less
than), > (greater than), = (equal to), <= (less than or equal to), >= (greater than
or equal to), and <> (not equal to) between two formulas. You can also combine
logical formulas with the logical operators AND, OR (inclusive or), XOR
(exclusive or) and NOT (negation), as described in detail below. You can think of
the relations and logical operators as arranged in the following order:

<, >, =, <=, >=, <>
NOT
ABS

OR, XOR

In addition, arithmetic operations are always performed before logical
operations. For example:

X = 1 AND Y = 3 + X * 2 means
(X = 1) AND (Y = (3 + (X * 2)))

PET = DOG AND NOISE = BARK OR PET = CAT AND NOISE = MEOW means
((PET = DOG) AND (NOISE = BARK)) OR ((PET = CAT) AND (NOISE = MEOW))

A * B + C = D AND E < F * G OR H JOIN J * K + L = - M means
((((A*B)+C)=D) AND (E<(F*G))) OR ((((H JOIN J)*K)+L)=(-M))

The remainder of this section describes the numeric functions available in
XYBASIC. A function is like an operator but is written differently: its arguments
(if any) are enclosed in parentheses following the function name. In Extended
XYBASIC, a TM (Type Mismatch) error will occur if a string value is used as the
argument of a numeric function, and an OV (OVerflow) error will occur if a
numeric value less than -32767 or greater than 32767 is used where an integer
value is expected.

Page 48 XYBASIC Programming Manual

ABS

The ABS function returns the absolute value of its argument. Try some
examples:

PRINT ABS (-1)
1
OK
PRINT ABS (100)
100
OK
PRINT ABS (-125)
125
OK

SGN

SGN is a function which gives the sign of a number. Its value is 1, O or -1 ,
depending on whether its argument is positive, zero or negative. For example:

PRINT SGN (1)
1
OK
PRINT SGN (O)
0
OK
PRINT SGN (-1)
-1
OK
PRINT SGN (-100)
-1
OK
PRINT SGN (#324)
1
OK

MOD

The MOD operator computes the remainder of the integer division operation. To
see how MOD works (in Extended XYBASIC; in Integer XYBASIC you should use
/ in place of \ in line 20) try the following program.

NEW
OK
10 INPUT "A, B = " A, B

XYBASIC Programming Manual Page 49

20 PRINT A; " \ "; B; "="; A \ B
30 PRINT A; "MOD"; B; "="; A MOD B
40 GOTO 10
RUN
A, B = ? 10,5
10 \ 5 = 2
10 MOD 5 = 0
A, B = ? 23,7
23 \ 7 = 3
23 MOD 7 = 2
A, B = ? 5,2
5 \ 2 = 2
5 MOD 2 = 1
A, B = ? ^C
OK

The equality A MOD B = A - (A \ B) * B will help you understand the result of
MOD, especially when the value of A or B is negative. If the value of B is zero,
an OV (OVerflow) error will occur.

SQR

In Extended XYBASIC you can compute square roots using the SQR function.
Try the following simple example:

PRINT SQR (2)
1.41421
OK

The argument of SQR must be a positive number. If you try to compute SQR of
a negative value, a FC (Function Call) error will occur.

LOG

The Extended XYBASIC function LOG returns the natural logarithm of its
argument. The following example uses a simple FOR-loop to print a table of the
values of LOG between 2 and 3.

NEW
OK
10 FOR I = 2 TO 3 STEP .1
20 PRINT 1, LOG(I)
30 NEXT
RUN
2 .693147
2.1 .741937
2.2 .788457

Page 50 XYBASIC Programming Manual

2.3 .832909
2.4 .875469
2.5 .916291
2.6 .955511
2.7 .993252
2.8 1.0296
2.9 1.06471
3 1.09861

OK

The argument of LOG must be a positive number. A FC (Function Call) error
will occur if the value of the argument is negative or zero.

EXP

The Extended XYBASIC function EXP (X) returns the value of the exponential e
^ X, where e is the Euler number 2.71828... For example:

PR1NT EXP (2)
7.38906
OK

SIN, COS, TAN and ATN

Extended XYBASIC provides the functions SIN, COS, TAN and ATN to compute
the trigonometric functions sine, cosine, tangent and arotangent. The
arguments of SIN, COS and TAN are given in radians. The result of ATN is in
radians (in the range -pi/2 to pi/2). Since 360 degrees equals 2 * pi radians,
you can convert degrees to radians by multiplying by (2 * pi / 360) = .0174533,
and you can convert radians to degrees by multiplying by (360 / (2 * pi)) =
57.2958.

The following example uses SIN to print a sine wave on your console. You can
interrupt it with <control-C>, vary the width of the wave by changing W and its
frequency by changing D, and then CONTinue. The TAB function used in line
40 is described in Section 5.

NEW
OK
10 W = 30
20 D = .23
30 I = I + D
40 PRINT TAB (W * (1 + SIN (I))); "*"
50 GOTO 30
RUN

*

XYBASIC Programming Manual Page 51

*
*

*
*
*
*
*

*
*

*
^C
BREAK AT LINE 40
OK

INT

In Extended XYBASIC you can use the function INT to find the integer part of a
(floating point) numeric value. INT returns the largest integer less than or equal
to the value of its argument. You can see how INT works from the following
example.

PRINT INT (-1.3), INT (1.3)
-2 1
OK

Extended XYBASIC automatically performs an INT whenever it finds a floating
point value when it expects an integer. For example, a reference to the array
element A (1.3, 2.75) is evaluated as a reference to A (1, 2), since array
subscripts must be integers.

RND and RANDOMIZE

In a real time or process control environment you may wish to simulate a
random process. For example, the designer of a telephone switching system may
want to simulate the random calling patterns which occur when users place
telephone calls. The function RND is useful for this purpose. In Integer
XYBASIC, RND returns a positive pseudorandom number between 0 and
32767. In Extended XYBASIC, RND (X) returns a pseudorandom number
between 0 and X. Its value is "pseudo" random because it is generated by a
mechanistic process; if you know the process you can predict the next number,
which you cannot do with a truly random number. But successive values of
RND have a random distribution, and repeat only after 65535 values.

The first example illustrates the use of RND in Integer XYBASIC.

Page 52 XYBASIC Programming Manual

NEW
OK
10 FOR I = 1 TO 10
20 PRINT RND;
30 NEXT I
RUN
5266 25294 28895 14655 12996 17448 28033 8137 6742 1634
OK

In Extended XYBASIC, the following program (like the example above, but with
line 20 changed slightly) generates random values between 0 and 1.

NEW
OK
10 FOR I = 1 TO 10
20 PRINT RND (1);
30 NEXT I
RUN
.160721 .771912 .881821 .447235 .396622 .532471 .855515
.248322 .205765 .049866
OK

As a convenience to users familiar with other versons of BASIC, Extended
XYBASIC treats END (0) as a special case and returns a value between 0 and 1
(rather than always returning 0).

The next sample program gives a simple game which uses RND to generate a
pseudorandom value. In Extended XYBASIC RND (10) generates a value
between 0 and 10, so INT (RND (10)) is between 0 and 9 and INT (RND (10)) + 1
is between 1 and 10.

NEW
OK
10 I = INT (RND (10)) + 1 ’GET RANDOM VALUE BETWEEN 1 AND 10
20 INPUT "YOUR GUESS (1 - 10)" J
30 IF I = J THEN 70
40 IF I < J THEN PRINT "TOO BIG"
50 IF I > J THEN PRINT "TOO SMALL"
60 GOTO 20
70 PRINT "YOU GUESSED IT!"
80 INPUT "WANT TO PLAY AGAIN (0 OR 1)" J
90 IF J = 1 THEN 10
RUN
YOUR GUESS (1 - 10)? 5
TOO BIG
YOUR GUESS (1 - 10)? 3
TOO BIG
YOUR GUESS (1 - 10)? 2
YOU GUESSED IT!

XYBASIC Programming Manual Page 53

WANT TO PLAY AGAIN (0 OR 1)? 1
YOUR GUESS (1 - 10)? 5
TOO SMALL
YOUR GUESS (1 - 10)? 8
TOO BIG
YOUR GUESS (1 - 10)? 7
YOU GUESSED IT!
WANT TO PLAY AGAIN (0 OR 1)? 0

OK

If you are using Integer XYBASIC and want a pseudorandom value between X
and Y, you can use the MOD operator to find X + RND MOD (Y - X + 1). Here
MOD returns a value between 0 and Y - X, and then adding X to the result gives
a value in the desired range. The above program could be modified for Integer
XYBASIC by changing line 10:

10 I = 1 + RND MOD 10 ’GET RANDOM VALUE BETWEEN 1 AND 10

The pseudorandom number generator will give the same sequence of values
whenever you load XYBASIC unless you use the RANDOMIZE command to start
a new sequence. If for example you say

RANDOMIZE 15

then 15 is used to reinitialize the pseudorandom number generator, and a new
series of pseudorandom values will be returned by RND. You can modify the
above guessing game as follows to get a different sequence of values each time
you play.

5 INPUT "TIME OF DAY" N
7 RANDOMIZE N
RUN
TIME OF DAY? 1240
YOUR GUESS (1 - 10)? 5
TOO SMALL
YOUR GUESS (1 - 10)? 6
TOO SMALL
YOUR GUESS (1 - 10)? 9
TOO BIG
YOUR GUESS (1 - 10)? 8
YOU GUESSED IT!
WANT TO PLAY AGAIN (0 OR 1)? 0
OK

Here the user types the time, and its value is used to reinitialize RND. You can
also use RANDOMIZE to get the same sequence of random values each time you
run a program, by reinitializing to a fixed value with a RANDOMIZE command
at the start of the program.

Page 54 XYBASIC Programming Manual

FRE

Storing your current XYBASIC program uses part of your computer’s memory.
Each variable in your program uses memory too. Executing some commands
(such as FOR and GOSUB) uses memory to store information needed later. You
can use the function FRE to find out how much free memory space you have
left. If you type

PRINT FRE
20893
OK

then XYBASIC will respond by printing the number of bytes still available. Of
course the number XYBASIC prints when you try this depends on the memory
configuration of your computer system.

In Extended XYBASIC you can use the similar function FRE$ to find how much
space you have left to store strings. FRE$ is described in Section 4 below.

The space used by FOR and GOSUB commands is reclaimed when the loop or
subroutine is completed, as the following program shows.

NEW
OK
10 PRINT FRE; "BYTES FREE INITIALLY"
20 FOR I = 1 TO 2
30 PRINT FRE; "BYTES FREE INSIDE FOR LOOP"
40 GOSUB 100
50 NEXT I
60 PRINT FRE; "BYTES FREE AFTER LOOP"
70 GOSUB 100
80 PRINT FRE; "BYTES FREE BEFORE STOP"
90 END
100 PRINT FRE; "BYTES FREE INSIDE GOSUB WITH I ="; I
110 RETURN
RUN
15489 BYTES FREE INITIALLY
15466 BYTES FREE INSIDE FOR LOOP
15461 BYTES FREE INSIDE GOSUB WITH I = 1
15466 BYTES FREE INSIDE FOR LOOP
15461 BYTES FREE INSIDE GOSUB WITH I = 2
15481 BYTES FREE AFTER LOOP
15476 BYTES FREE INSIDE GOSUB WITH I = 3
15481 BYTES FREE BEFORE STOP
OK

XYBASIC Programming Manual Page 55

You can see from the example that the space used by the commands is
recovered. Of course the values printed will depend on the size of your computer
system’s memory, as noted above.

The value of FRE is really an unsigned 16-bit representation. If your system has
more than 32K of free memory, you should always use the UNS function
(described below) when PRINTing FRE:

PRINT UNS (FRE)

This will prevent the number of free bytes from appearing as a negative number.

UNS

As described in detail under Integer Representations in Section 8 below,
XYBASIC uses 16 bits to store integer values. When you PRINT an integer-
valued formula, XYBASIC normally gives the value considered as a two’s
complement representation. But for some purposes you may want to use the
function UNS to PRINT its value as an unsigned 16-bit representation instead.
UNS is particularly useful in conjunction with commands and functions which
take memory addresses (between 0 and 65535, rather than -32768 and 32767)
as arguments. For example, you should say

PRINT UNS (FRE)

rather than PRINT FRE to find how many bytes remain free, as a value greater
than 32767 would otherwise be printed as a negative number. Try the following
program to see what UNSigned values various bit patterns represent.

NEW
OK
10 INPUT "TEST VALUE" X
20 PRINT "TWO’S COMPLEMENT VALUE IS", X
30 PRINT "UNSIGNED VALUE IS", UNS(X)
40 GOTO 10
RUN
TEST VALUE? -1
TWO’S COMPLEMENT VALUE IS -1
UNSIGNED VALUE IS 65535
TEST VALUE? #7fff
TWO’S COMPLEMENT VALUE IS 32767
UNSIGNED VALUE IS 32767
TEST VALUE? -175
TWO’S COMPLEMENT VALUE IS -175
UNSIGNED VALUE IS 65361
TEST VALUE? ^C
BREAK AT LINE 10
OK

Page 56 XYBASIC Programming Manual

Again, type <control-C> to exit from this program.

In Integer XYBASIC, UNS may only be used in PRINT commands. In Extended
XYBASIC, UNS may be used anywhere in a formula, like any other function.

DEF FN

XYBASIC has many useful functions, but it may lack one you need. Therefore
the very powerful DEF command allows you to DEFine your own functions. For
example,

10 DEF FN DOUBLE (I) = I * 2

defines a function named DOUBLE which multiplies the value of its argument
by 2. You can use any variable name for the name of the function, and a
DEFined function can then be used in any formula. If you say

X = FN DOUBLE (Y)

then XYBASIC gives X the result of applying the function DOUBLE to the value
of Y. Try the following program.

NEW
OK
10 DEF FN DOUBLE (I) = I * 2
20 INPUT "VALUE" X
30 PRINT "DOUBLE ("; X; ") ="; FN DOUBLE (X)
40 GOTO 20
RUN
VALUE? 2
DOUBLE (2) = 4
VALUE? 100
DOUBLE (100) = 200
VALUE? -165
DOUBLE (-165) = -330
VALUE? ^C
BREAK AT LINE 20
OK

DEF is legal only in program mode; an ID (Illegal Direct) error will occur if you
try to use it in direct mode. An FC (Function Call) error will occur if you try to
use a function DEFined in terms of itself, either directly or indirectly.

The variable I in the function DEFinition is called a dummy parameter. The
value of the variable used as a dummy parameter is not changed when you
evaluate the function. You can also write function DEFinitions with as many
parameters as you desire or without any parameters. The following useful

XYBASIC Programming Manual Page 57

example uses a function without parameters to convert numbers (given in
decimal, binary or hexadecimal) to octal.

NEW
OK
10 DEF FN OCTAL = TEST(N,I) + TEST(N,I+1) + TEST(N,I+2)*4
20 INPUT "VALUE" N
30 PRINT "OCTAL ("; N; ")=";
40 PRINT TEST(N,15)
50 FOR I = 12 TO 0 STEP -3
60 PRINT FN OCTAL;
70 NEXT I
80 PRINT
90 GOTO 20

RUN
VALUE? 257
OCTAL(257)= O O O 4 0 1
VALUE? -1
OCTAL(-1)= 1 7 7 7 7 7
VALUE? #F0F0
OCTAL(-3856)= 1 7 0 3 6 0
VALUE? &10110101000101
OCTAL(11589)= 0 2 6 5 0 5
VALUE? ^C
BREAK AT LINE 20
OK

This program DEFines a function OCTAL which calculates one digit of the octal
representation of N by TESTing three binary digits (which correspond to one
octal digit). A FOR loop calls OCTAL to get successive octal digits of N.

In Extended XYBASIC you can DEFine functions of any type -- integer, floating
point or string. The function name you choose determines the result type of the
function. The parameters of the function may also be of any type. A TM (Type
Mismatch) error will occur if the actual parameters in the FN call are
incompatible with the dummy parameters in the DEFinition, or if the result of
evaluating the function body is incompatible with the function’s result type. For
example, the following commands define three different functions.

10 DEF FN F (X, Y) = (X + Y) / 2
20 DEF FN ROT$ (A$, I) = MID$ (A$, I + 1) + LEFT$ (A$, I)
30 DEF FIN BAD (X) = "BAD" + STR$ (X)

The floating point function FN F returns the average of its two floating point
arguments. The string function FN ROT$ rotates its string argument left by the
number of characters given by its numeric argument; examples of its use are
given under String Functions in Section ll, where you will also find definitions of
the functions +, MID$ and LEFT$. The function FN BAD is a floating point

Page 58 XYBASIC Programming Manual

function, but evaluating its function body gives a string value; therefore any call
of FN BAD will result in a TM error.

Variable Types

In Extended XYBASIC variables can be of three types: floating point, integer, or
string. As noted in Section 2, variable names may consist of a letter followed by
letters or digits, optionally followed by one of the characters !, %, or $. Variable
names ending in a letter or digit, or in !, are floating point variables; variable
names ending in % are integer variables; and variable names ending in $ are
string variables. The optional type characters are not considered part of the
variable name, so for example DOG and DOG! represent the same floating point
variable. However, the string variable DOG$; and the integer variable DOG% are
different from the floating point variable DOG, and different from each other.

Initially the default variable type for all variables in Extended XYBASIC is
floating point, so any variable name not ending in % or is assumed to be the
name of a floating point variable. You can change the default variable type for
variable names beginning with a given letter or letters by using the DEF INT,
DEF SNG, and DEF STR commands. For example, the command

DEF INT I

tells XYBASIC that all variable names starting with I (and not ending in ! or $)
represent integer variables. Similarly, the command

DEF STR A-B

tells XYBASIC that all variable names starting with A and B (and not ending in !
or %) represent string variables. And the command

DEF SNG A-Z

tells XYBASIC that all variables starting with A through Z (i.e. with any letter)
represent floating point variables. Here SNG abbreviates SiNGle, indicating that
the variable is a single precision floating point value.

As noted above, integer arithmetic is faster than floating point arithmetic. If a
program only uses numbers which are integers in the range -32767 to 32767,
you can make it run faster by using integer variables throughout. The simplest
way to do so is to include the command

10 DEF INT A-Z

as the first line of your program, to tell XYBASIC all variables are integer
variables.

XYBASIC Programming Manual Page 59

The default variable type for all letters is reset to floating point whenever
Extended XYBASIC executes a NEW, CLEAR, RUN or LOAD command.

Page 60 XYBASIC Programming Manual

Section 4: Strings

In addition to numeric values, Extended XYBASIC lets you use strings
containing up to 255 ASCII characters. You can write string formulas which
construct new strings, and you can assign string values to string variables.
Strings are an extremely powerful programming tool. You can use the string
capabilities of XYBASIC to write text processing programs for a wide variety of
applications. This section describes in detail the string manipulation facilities of
Extended XYBASIC.

Quoted Strings

You have already used the simpest type of string, the quoted string, in Section 2
above. A quoted string is just a sequence of characters enclosed in quote marks
(" "), as in the command:

PRINT "HELLO"
HELLO
OK

The characters you can include within a quoted string include any printable
ASCII characters. In particular you can use both upper and lower case
alphabetic characters:

PRINT "Hello again"
Hello again
OK

You can also use the character <control-G> within quoted strings. On most
terminals <control-G> will be "PRINTed" as an audible bell or beep. To include
nonprintable ASCII characters (or the quote mark character) within strings you
can construct a string formula using the CHR$ function, as described below.

String Variables

Extended XYBASIC lets you assign string values to string variables, in exactly
the same way as numeric values are assigned to numeric variables. Any legal
variable name followed by the character $ is a string variable. String variables
are always initialized to the null (or empty) string, the string containing no
characters, when first encountered. You can assign a new value to a string
variable with LET:

LET A$ = "DOG"
OK
PRINT A$

XYBASIC Programming Manual Page 61

DOG
OK

Of course the word LET is optional, as before. In this example the value
assigned to A$ is given by a quoted string. You can also use string variables or
more complicated string formulas (built up from the string-valued functions
described below) as the right side of a LET command. However, a TM (Type
Mismatch) error will occur if you try to assign a numeric value to a string
variable, or a string value to a numeric variable. A TM error will also occur if
you use a numeric value as an argument to a function which should have a
string argument, or vice versa.

You can also assign a new value to a string variable with the READ and INPUT
commands. The DATA or INPUT values you specify may be either quoted or
unquoted strings. Of course you must enclose DATA or INPUT items in quotes
to include a comma in a string, since commas are used to separate DATA and
INPUT items. Leading spaces are also removed from unquoted strings. The
following example illustrates these points.

NEW
OK
10 INPUT "Name, Salary" A$, I
20 PRINT "The salary of "; A$; " is $"; I
30 PRINT
40 GOTO 10
RUN
Name, Salary? Carter, 200000
The salary of Carter is $ 200000

Name, Salary? Jones, John, 3.65
REDO? "Jones, John", 3.65
The salary of Jones, John is $ 3.65

Name, Salary? ^C
BREAK AT LINE 10
OK

Notice that Extended XYBASIC prompted with REDO? after the second line
typed in response to the INPUT command of line 10, as the string "Jones" was
INPUT for A$ and the string "John" could not be assigned to the numeric
variable I. Enclosing "Jones, John" in quote marks in the following line made
the problem disappear.

LEN

The function LEN returns the length of its string argument, which is the
number of characters the string contains. Its value is an integer between 0 and
255. For example:

Page 62 XYBASIC Programming Manual

NEW
OK
10 INPUT A$
20 PRINT LEN (A$)
30 GOTO 10
RUN
? "CAT"
3
? "Dog house"
9
? ""
0
? ^C
BREAK AT LINE 10

As you can see from the second example, spaces are treated like any other
character within strings.

Concatenation (+)

The string concatenation operator + allows strings to be "added", by simply
joining one string to another. For example:

NEW
OK
10 PRINT LEN(A$), A$
20 A$ = A$ + "HA!"
30 GOTO 10
RUN
0
3 HA!
6 HA!HA!
9 HA!HA!HA!
12 HA!HA!HA!HA!
15 HA!HA!HA!HA!HA!
18 HA!HA!HA!HA!HA!HA!
21 HA!HA!HA!HA!HA!HA!HA!
24 HA!HA!HA!HA!HA!HA!HA!HA!
^C
BREAK AT LINE 10
OK

Since the maximum string length permitted is 255 characters, an LS (Long
String) error will occur if the result of + is a string longer than 255 characters.
The result will be truncated to 255 characters.

XYBASIC Programming Manual Page 63

If you use a very complicated string formula in a program, an ST (STring) error
may occur. You can avoid the ST error by rewriting the string formula in terms
of several simpler formulas.

LEFT$, RIGHT$ and MID$

The substring functions LEFT$, RIGHT$ and MID$ are used to take apart
strings. LEFT$ (A$, I) returns the leftmost I characters of A$, as you can see in
the following example.

NEW
OK
10 INPUT A$
20 FOR I =1 TO LEN (A$)
30 PRINT LEFT$ (A$, I)
40 NEXT I
50 GOTO 10

RUN
? CATFISH
C
CA
CAT
CATF
CATFI
CATFIS
CATFISH
? ^C
BREAK AT LINE 10
OK

Similarly, RIGHT$ (A$, I) returns the rightmost I characters of A$. Change the
above example as follows:

30 PRINT RIGHT$ (A$, I)
RUN
? DOGHOUSE
E
SE
USE
OUSE
HOUSE
GHOUSE
OGHOUSE
DOGHOUSE
? ^C
BREAK AT LINE 10
OK

Page 64 XYBASIC Programming Manual

The function MID$ may be used in either of two forms. MID$ (A$, I) returns the
right part of A$ starting at the Ith character; the null string is returned if I >
LEN (A$). Continuing with the above example:

30 PRINT MID$ (A$, 1)
RUN
? XYBASIC
XYBASIC
YBASIC
BASIC
ASIC
SIC
IC
C
? ^C
BREAK AT LINE 10
OK

The second form of MID$ is MID$ (A$, I, J), which returns the string of J
characters starting at the Ith character. Change the program as follows:

30 PRINT MID$ (A$, I, 2)
RUN
? FISH
IS
SH
H
? ^C
BREAK AT LINE 10
OK

The next example uses MID$ to reverse the order of characters in a string.

NEW
OK
10 INPUT A$
20 B$ = ""
30 FOR I = 1 TO LEN (A$)
40 B$ = MID$ (A$, I, 1) + B$
50 NEXT I
60 PRINT "The reverse of "; A$ " IS "; B$
70 GOTO 10
RUN
? DOG
The reverse of DOG is GOD
? SAW
The reverse of SAW is WAS
? gorilla

XYBASIC Programming Manual Page 65

The reverse of gorilla is allirog
? ^C
BREAK AT LINE 10
OK

For each of the functions LEFT$, RIGHT$ and MID$, a nonfatal FC (Function
Call) error occurs if the value of I is less than 0 or greater than 255, and the
bad value is replaced by O or 255. If I > LEN (A$), LEFT$ and RIGHT$ return all
of A$, while MID$ returns the null string.

CHR$

The CHR$ function lets you include nonprintable characters within strings.
CHR$ (I) returns the string containing the character with ASCII value I;
Appendix 5 gives a table of ASCII character equivalents. For example, the ASCII
value of <carriage return> is 13 and the ASCII value of <1inefeed> is 10, so you
can define a string CRLF$ consisting of the two characters <carriage return>
and <1inefeed> by typing

LET CRLF$ = CHR$ (13) + CHR$ (10)
OK

A BY (BYte) error occurs if the argument of CHR$ is not a legal (8-bit) character
value. Although Integer XYBASIC does not contain other string functions, CHR$
is allowed within PRINT commands in Integer XYBASIC. Additional information
on CHR$ is given in Section 5.

ASC

The function ASC returns an integer giving the ASCII value of the first character
of A$. An FC error occurs (and ASC returns 0) if A$ is the null string. For
example,

PRINT ASC ("CAT
67
OK
PRINT ASC ("DOG")
68
OK

Relations

The relations <, =, >, <=, >= and <> may be used to compare two strings as well
as to compare numeric values. Two strings are equal if they are the same, that
is if both have the same length and the ASCII values of corresponding
characters are equal. For example, "DOG" = "DOG" is true but "DOG" = "DOG "

Page 66 XYBASIC Programming Manual

is false; since the space is not ignored, the lengths of "DOG" and "DOG " are not
the same.

A$ < B$ if the ASCII value of the first character of A$ is less than that of the
first character of B$; for example, "BAT" < "C". If the first character (or
characters) is the same, A$ < B$ if the first nonmatching character is less; for
example, "DOGFOOD" < "DOGHOUSE" because "F" < "H". The null string is less
than any nonnull string, so "DOG" < "DOGFOOD" (because the null string "" <
"FOOD"). Since the relation defines the usual alphabetic order on strings, you
can use it to alphabetize a set of strings. A sample program which performs a
bubble sort on names is given in the following section on string arrays.

The remaining relations >, <=, >= and <> are defined in the usual way in terms
of = and <. For example, A$ <> B$ is true if A$ = B$ is false.

String Arrays

Extended XYBASIC lets you DIMension arrays of string variables in precisely
the same way you DIMension arrays of numeric variables. If you are writing a
program which processes payroll information about employees, you might use
the command

DIM NAME$ (50)

at the start of the program to allocate 51 string variables called NAME$ (O),
NAME$ (1), ... NAME$ (50). Then these variables can be used in the program
just like simple string variables. The following program gets names from the
console and sorts them into alphabetical order with a simple bubble sort. A
bubble sort works by interchanging pairs of values, letting the least ("lightest")
values "bubble" to the top. In this program S(1) is compared to S(2), ..., S(N) to
assure S(1) is the least; then S(2) is compared to S(3), ..., S(N), and so on. Notice
that the DEF STR S command in line 10 allows subsequent commands to refer
to the string array as S rather than S$.

NEW
OK
10 DEF STR S
20 REM FIRST GET THE DESIRED NUMBER OF NAMES
30 INPUT "Number of names" N
40 DIM S(N)
50 REM NEXT GET THE NAMES
60 FOR I = 1 TO N
70 INPUT "Name" S(I)
80 NEXT I
90 REM BUBBLE SORT THE NAMES AND PRINT THE SORTED RESULT
100 PRINT "Sorted name List:"
110 FOR I = 1 TO N-1
120 FOR J = 1+1 TO N

XYBASIC Programming Manual Page 67

130 IF S(1) > S(J) THEN GOSUB 200
140 NEXT J
150 PRINT S(I)
160 NEXT I
170 END
ZOO REM SWITCH THE VALUES S(I) AND S(J)
210 STEMP = S(I)
220 S(I) = S(J)
230 S(J) = STEMP
240 RETURN
RUN
Number of names? 5
Name? Wilson
Name? Smith
Name? Jones
Name? Adams
Name? Smithson
Sorted name list:
Adams
Jones
Smith
Smithson
Wilson

OK

String Functions

You can DEFine your own string functions in Extended XYBASIC, in the same
way as described under DEF FN in Section 3 above. The following example
DEFines a function named ROT$ which rotates its string argument to the left.
Note the power of XYBASIC’s user-DEFined functions, which let you write
functions taking both string and numeric arguments.

NEW
OK
10 DEF FN ROT$ (A$, I) = MID$ (A$, I+1) + LEFT$ (A$, I)
20 INPUT "STRING, COUNT" A$, I
30 PRINT A$; " ROTATED LEFT"; I; "PLACES IS "; FN ROT$ (A$, I)
40 PRINT
50 GOTO 20

RUN
STRING, COUNT? HOUSEBOAT,5
HOUSEBOAT ROTATED LEFT 5 PLACES IS BOATHOUSE

STRING, COUNT? abcdef,4
abcdef ROTATED LEFT 4 PLACES Is efabcd

Page 68 XYBASIC Programming Manual

STRING, COUNT? ^C
BREAK AT LINE 20
OK

INSTR

The purpose of INSTR is to provide a convenient and powerful way of finding
occurences of one string within another. INSTR (A$, B$) returns the least
integer n such that the substring of A$ which starts at the nth character
matches B$. If no substring of A$ matches B$, INSTR returns 0. For example:

PRINT INSTR ("DOG", "G
3
OK
PRINT INSTR ("DOG", "C
0
OK

In the first example INSTR returns 3, since "G" is the third character of "DOG".
In the second example INSTR returns 0, since the character "C" does not occur
in "DOG".

A common use of INSTR is to break up long strings into simpler component
parts. The next example uses INSTR to find spaces in a sentence and break the
sentence into separate words.

NEW
OK
10 DIM S$ (50)
20 INPUT "Sentence" A$ ’GET THE SENTENCE
30 I = INSTR (A$, " ") ’FIND THE NEXT SPACE
40 N = N + 1 ’BUMP WORD COUNT
50 IF I = 0 THEN 90 ’DONE IF NO MORE SPACES
60 S$ (N) = LEFT$ (A$, I-1) ’SAVE CURRENT WORD
70 A$ = MID$ (A$, 1+1) ’LET SENTENCE BE REMAINDER
80 GOTO 30
90 S$ (N) = A$ ’LAST WORD IS REMAINDER
100 FOR I = 1 TO N ’PRINT THE WORDS
110 PRINT S$ (I)
120 NEXT I

RUN
Sentence? The world is everything which is the case.
The
world
is
everything

XYBASIC Programming Manual Page 69

which
is
the
case.

OK

Another form of INSTR lets you specify an offset, so you can look for occurences
of a substring starting at any character of a string. INSTR (I, A$, B$) returns the
least integer n >= I such that the substring of A$ starting at the nth character
matches B$. For example:

PRINT INSTR (4, "VOODOO", "OO")
5
OK

The string "VOODOO" contains the substring "OO" starting at positions 2 and 5,
so here INSTR returns the first position greater than 4. The sample program
above may be simplified by making the following changes, using this form of
INSTR and leaving the value of A$; unchanged.

30 LAST = I + 1
35 I + INSTR (LAST, A$, " ")
60 S$ (N) = MID$ (A$, LAST, I-LAST)
70
90 S$ (N) = MID$(A$, LAST)
RUN
Sentence? There is much here to excite admiration and perplexity.
There
is
much
here
to
excite
admiration
and
perplexity.
OK

GET$

The GET$ function lets you check whether a character has been typed while a
program is running. If a character has been typed, GET$ returns a string value
consisting of the typed character. If no character has been typed, GET$ returns
the null string.

Page 70 XYBASIC Programming Manual

You can use GET$ to let a user respond to a question by typing Y or N, or to
define control characters to monitor program execution without using <control-
C> and CONT. The following example just increments the value in I, and prints
its value whenever you type P.

NEW
OK
10 IF GET$ = "P" THEN GOSUB 100
20 I = I + 1
30 GOTO 10
100 PRINT I;
11D RETURN
RUN
57 113 181 193 201 305 369 ^C
BREAK AT LINE 20
OK

Since XYBASIC automatically removes the parity bit from any character it
reads, you cannot GET$ any character with an ASCII value greater than 127
(7F hexadecimal). And of course you should not try to GET$ characters such as
<control-C> which have special meanings to XYBASIC.

The function GET is similar to GET$, but returns the ASCII value of the typed
character instead of a string consisting of the character. GET is described in
Section 8 below.

STR$ and VAL

STR$ and VAL allow conversion between numeric values and strings, and are
especially helpful when used with other string functions to reformat numerical
output. STR$ (X) turns a numeric value into its string equivalent, returning the
string of characters which Extended XYBASIC would PRINT as the value of X.
For example, the following program converts an amount to dollars and cents,
and then uses STR$ to convert the dollars and cents to strings which are
PRINTed as part of the string S$.

NEW
OK
10 INPUT "Amount" X
20 D = INT (X)
30 C = 100 * (X - INT (X))
40 S$ = STR$ (D) + " dollars and" + STR$ (C) + " cents"
50 PRINT X; X; "is"; S$
60 GOTO 10
RUN
Amount? 2.25
$ 2.25 is 2 dollars and 25 cents
Amount? .37

XYBASIC Programming Manual Page 71

.37 is O dollars and 37 cents
Amount? 11.95
$ 11.95 is 11 dollars and 95 cents
Amount? ^C
BREAK AT LINE 10
OK

Conversely, VAL converts a string representation of a number into its numeric
value; that is, VAL (A$) gives the numeric value of the constant represented by
the string A$. In the following program VAL finds the value of the amount typed
after the dollar sign, ignoring the string preceding the dollar sign.

NEW
OK
10 INPUT S$
20 I = INSTR (S$, "$") ’ FIND THE $ IN S$
30 X = VAL (MID$ (S$, I+1)) ’FIND VALUE OF DOLLAR AMOUNT
40 PRINT "The amount is"; X
50 GOTO 10
RUN
? The unit cost is $6.34
The amount is 6.34
? The price is $9.95
The amount is 9.95
? ^C
BREAK AT LINE 10
OK

If the value of A$ is not a legal constant, an FC error occurs and VAL returns 0.

CLEAR and FRE$

Instead of wasting memory by statically allocating space for each string variable
to contain up to 255 characters, Extended XYBASIC stores the values of string
variables dynamically in a part of memory called string space. String space is
also used for temporary storage during the evaluation of some string formulas.
Extended XYBASIC initially allocates 256 bytes of string space, which should be
adequate for programs which do not use strings extensively. For more complex
string programs, the amount of allocated string space may be changed by using
the CLEAR command with a numeric argument. For example,

CLEAR 1000
OK

tells Extended XYBASIC to allocate 1000 bytes of string space. The argument of
CLEAR may be any numeric formula. Of course an OM (Out of Memory) error
will occur if you try to allocate more string space than the amount of free
memory allows.

Page 72 XYBASIC Programming Manual

Just as before, the CLEAR command (without an argument) may be used to
clear all variables; this form of CLEAR leaves the amount of string space
unchanged.

You can use the function FRE$ to find the number of unused bytes remaining
in string space, as in the following example.

CLEAR 256
OK
PRINT FRE$
256
OK

A$ = "DOG"
OK
PRINT FRE$
253
OK

As you can see, assigning the string variable A$ the value "DOG" used three
bytes of string space.

If Extended XYBASIC runs out of string space, an OS (Out of String space) error
will occur. You should then use CLEAR to increase the amount of available
string space.

For programs which perform extensive string manipulation, you can sometimes
improve execution speed dramatically by allocating more string space. This
happens because the extra space allows Extended XYBASIC to perform string
operations more quickly.

XYBASIC Programming Manual Page 73

Section 5: PRINT Related Commands

The functions and commands in this section help you format output and
control your console in different ways. These features are used in conjuction
with PRINT commands.

SPC

The SPC function allows easy formatting of output lines. It can only be used
within PRINT commands, and simply PRINTS the number of spaces specified by
its argument. For example:

NEW
OK
10 FOR I = 0 TO 10
20 PRINT "*"; SPC(I); "*"
30 NEXT I
RUN
**
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

OK

TAB

TAB allows you to format your output by spacing to the column on your console
specified by its argument. It can only be used within PRINT commands. Try
this:

PRINT TAB(7);"*"
*

OK

The following program further demonstrates the TAB function.

Page 74 XYBASIC Programming Manual

NEW
OK
10 FOR I = O TO 71
20 PRINT TAB(I); "*"
30 NEXT I
40 FOR I = 70 TO 0 STEP -1
50 PRINT TAB(I); "*"
60 NEXT I
70 GOTO 10

RUN
*
*
*
*
*
*
*
*
*
*
*

^C
BREAK AT LINE 20
OK

To exit from this program just type <control-C>.

POS

The function POS takes no arguments, and returns the current position of the
cursor on the XYBASIC print line. If no characters have been printed since the
last <carriage return> and <linefeed>, its value is 0; otherwise its value is the
column in which the most recent character was printed. Modifying line 20 of the
SPC example above:

NEW
OK
10 FOR I = 0 TO 10
20 PRINT "*"; SPC(I); "*"; POS
30 NEXT (
RUN
** 2
* * 3
* * 4
* * 5
* * 6
* * 7

XYBASIC Programming Manual Page 75

* * 8
* * 9
* * 10
* * 11
* * 12

OK

CHR$

Console devices (e.g. teletypes and CRT terminals) usually can be controlled by
nonprinting control characters. Such characters may for example turn on a
teletype reader or backspace the cursor on a CRT. The CHR$ function allows
you to PRINT these characters. In Extended XYBASIC, CHR$ returns a one
character string with the ASCII value of its argument, as described in Section 4
above, and its value can be PRINTed like any other string value. In Integer
XYBASIC, CHR$ can only be used within PRINT commands, and PRINTS the
character with the ASCII value of its argument. Appendix 5 contains a table of
ASCII equivalents.

For example, the ASCII value of A is 65, so you can print an A by saying

PRINT CHR$(65);
A
OK

Try the following program:

NEW
OK
10 FOR I = 1 TO 26
20 PRINT CHR$(64+I);
30 NEXT I
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
OK

CHR$ is also used by the hexadecimal conversion program using RSHIFT in
Section 8.

If the argument of CHR$ is greater than 255, a BY (BYte) error will occur.

NULL

Some consoles require fill characters (nulls) after they put out a <carriage
return> and <linefeed>. Without fill characters, the first few characters after a
<carriage return) and <linefeed> may be lost or may be typed before the carriage

Page 76 XYBASIC Programming Manual

reaches the left margin.

XYBASIC sends no fill characters until you use the NULL command to specify
how many fill characters your console needs. If it needs four fill characters, just
say

NULL 4

Then four fill characters are sent after each subsequent <carriage return> and
<linefeed>. That’s all there is to it.

XYBASIC Programming Manual Page 77

Section 6: Input/Output, Saving and Loading Programs

The commands in this section allow you to redirect your input or output from
one physical device to another, to learn what devices you are using, to SAVE
programs for later use and to LOAD programs you have SAVEd.

ASSIGN

If your operating system supports an I/O byte (as the Intellec MDS does, and as
CP/M can), you may use the ASSIGN command to reassign physical devices to
logical devices. A logical device is a device type (such as CONsole or PUNch)
which may have several different physical device implementations; for example
your system may let you use either a teletype or a CRT terminal as your console
device.

The ASSIGN command allows you to switch between physical devices under
program control. ASSIGN changes the value of the I/O byte, so subsequent
operations are directed to the selected physical device. For example, to change
the CONsole device to device 1 you can just type

ASSIGN CON#1

The logical device you specify must be CON# (CONsole), RDR# (ReaDeR), PUN#
(PUNch), or LST# (LiST). The physical device must be specified by a value
between 0 and 3 or an FC (Function Call) error will occur.

XYBASIC normally performs all input and output to the CONsole device. Output
is echoed to the LiST device whenever <control-P> is typed. The PUNch and
ReaDeR devices are used to SAVE and LOAD programs in Custom I/O versions
of XYBASIC, as described below.

IOBYTE

The function IOBYTE returns the current value of the I/O byte, so you can use
it to check which physical devices you currently have ASSIGNed. If you say

X = IOBYTE

then X is set to the current value of the I/O byte. The I/O byte contains a two-
bit field for each of the four logical devices (CONsole, ReaDeR, PUNch, and
LiST), and is organized as indicated by the following diagram.

+---------------+---------------+---------------+---------------+
| LiST field | PUNch field | ReaDeR field | CONsole field |
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

Page 78 XYBASIC Programming Manual

+---------------+---------------+---------------+---------------+

To find the current value of the punch field (using the shift function RSHIFT
described in Section 8), you could for example type

PRINT RSHIFT (IOBYTE, 4) AND &11
0
OK

The CP/M and ISIS-II versions of XYBASIC store the current value of IOBYTE in
the system I/O byte at location 3. Custom I/O versions store the IOBYTE value
in the first RAM location (normally 4000H for Extended XYBASIC and 2000H
for Integer XYBASIC), and set its value to 0 during initialization.

SAVE and LOAD

SAVE lets you to preserve a program for later use, and LOAD allows you to
recall a SAVEd program. In the CP/M and ISIS-II versions of XYBASIC
programs are SAVEd to and LOADed from disks. In the Custom I/O version of
XYBASIC, SAVE uses the logical PUNch device and LOAD uses the logical
ReaDeR device (which may e.g. be audio cassette or paper tape -- don’t forget to
turn on whatever device you are using!). If you type

SAVE "EXAMPL"

then a file called EXAMPL.XYB containing the current program will be SAVEd in
XYBASIC’s internal representation on the currently logged disk under CP/M, on
:F0: under ISIS-II, or through the PUNch device in Custom I/O versions.

To load a SAVEd program you just type

LOAD "EXAMPL"

LOAD also can be used within programs. The current program is deleted when
another is LOADed, but you can use LOAD to execute several programs in
succession. An RO (ROmsq feature) error will occur if you try to LOAD a
program while XYBASIC is addressing a program outside its working space.

In Custom I/O versions, the specified filename may consist only of one to eight
upper case letters or digits. You can also type LOAD without a filename to
LOAD a program. If a filename is specified, XYBASIC reads from the ReaDeR
until it finds the SAVEd program with the given filename; if not, it LOADs the
first program it finds.

Because programs are SAVEd or LOADed in XYBASIC’s internal representation,
SAVE and LOAD will work correctly in Custom I/O versions only if your RDR
and PUN routines pass eight bit bytes -- routines which change the parity bit
will NOT work! The format of SAVEd programs is described in the Custom I/O

XYBASIC Programming Manual Page 79

version section of Chapter II. In Custom I/O versions, a CS (CheckSum) error
occurs if part of a program LOADs incorrectly.

If you have a teletype with a paper tape reader and punch, you can save
programs in ASCII by turning on the punch and using the LIST command.
Typing NEW and reading the resulting paper tape then loads your program.

In ISIS-II versions, the filename may consist of one to six letters or digits, and
may be preceded by an optional device name; for example,

SAVE :F1:"EXAMPL" ’SAVE AS :F1:EXAMPL.XYB UNDER ISIS-II

ISIS-II versions also have the ability to SAVE and LOAD programs as an Intel
compatible HEX file. A file is SAVEd in HEX format by adding ,H to the end of a
SAVE command.

SAVE "EXAMPL",H ’SAVE IN HEX AS :F0:EXAMPL.HEX

Of course, a HEX file which has been SAVEd can be LOADed using a similar
syntax:

LOAD "EXAMPL",H ’LOAD THE FILE EXAMPL.HEX

This allows users with the Intel PROM programmer UPM to burn PROMs easily.
Once a program is debugged, it is saved in HEX format, read into memory using
UPM, and then burned into PROM in the normal manner. The HEX file created
by SAVE contains an image of the current program relocated to location 0, and
should be read with an appropriate offset.

In both CP/M and ISIS-II versions, XYBASIC will SAVE or LOAD the program in
a printable and editable ASCII representation, as EXAMPL.BAS, if the specified
filename is followed by ,A.

SAVE "EXAMPL",A ’SAVE IN ASCII AS EXAMPL.BAS

LOADing a .BAS file is much slower than LOADing an .XYB file, so programs
should generally be SAVEd in internal .XYB format if the ASCII version is
unneeded.

In CP/M versions, the filename may be specified by any string, either quoted or
unquoted. The string may consist of an optional disk name, such as A: or B:,
followed by one to eight letters or digits. Lower case characters are converted to
upper case within the filename, and the currently logged disk is assumed if no
disk name is given. For example, if the value of S$ is "EXAMPLE",

LOAD S$ ’LOAD FROM LOGGED DISK UNDER CP/M
SAVE "B:EXAMPLE" ’SAVE TO DISK B: UNDER CP/M

Page 80 XYBASIC Programming Manual

In CP/M versions another form of LOAD allows you to LOAD a program and
execute it immediately, without typing RUN. For example,

LOAD "TEST", R

will load TEST.XYB and RUN it. Similarly,

LOAD "B:TEST2", A, R

will load B:TEST2.BAS and RUN it. With this enhanced form of LOAD you can
LOAD a XYBASIC program during execution of another program, and RUN it
immediately without typing anything on your console. In this way you can build
chains of XYBASIC programs which run without user intervention.

If a CP/M or ISIS-II version of XYBASIC cannot SAVE or LOAD your program
successfully (because of a full disk, for example), a DK (DisK) error results.
Under ISIS-II, an ISIS-II error message specifying the nature of the error is also
printed. Since XYBASIC takes some time to process a typed program line before
being ready for the next line, the first few characters of some lines might be lost
unless you use the NULL command described in Section 5 to punch some nulls
(15 is usually enough) at the end of each line.

XYBASIC Programming Manual Page 81

Section 7: Debugging

Even the most experienced programmers write programs which do not work
correctly. When a program does not work in the intended way, it is said to have
a bug. Getting rid of bugs is called debugging, and can be one of the most
difficult tasks confronting the programmer. XYBASIC has a number of features
which simplify debugging and enable you to get your program running correctly
sooner than would be possible with other BASICS. Rather than trying to find
bugs by passively examining listings, you can interact with XYBASIC and let it
help you find your mistakes with its debugging features.

TRACE and UNTRACE

TRACE lets you watch the execution of your program on a command by
command basis. In TRACE mode XYBASIC prints the bracketed line number
and contents of each command executed and the name and value of any
modified variable. The following program printing prime numbers shows what
TRACE execution looks like.

NEW
OK
10 TRACE
20 PRINT 2; "IS PRIME"
30 N = 1
40 N = N + 2
50 FOR I = 3 TO N/2 STEP 2
60 IF N MOD I = 0 THEN 40
70 NEXT I
80 PRINT N; "IS PRIME"
90 GOTO 40
RUN
[20 PRINT 2; "IS PRIME"] 2 IS PRIME

[30 N = 1] N= 1
[40 N = N + 2] N= 3
[50 FOR I = 3 TO N/2 STEP 2] I= 3
[80 PRINT N; "IS PRIME"] 3 IS PRIME

[90 GOTO 40]
[40 N = N + 2] N= 5
[50 FOR I = 3 TO N/2 STEP 2] I= 3
[80 PRINT N; "IS PRIME"] 5 IS PRIME

[90 GOTO 40]
[40 N = N + 2] N= 7
[50 FOR I = 3 TO N/2 STEP 2] I= 3

Page 82 XYBASIC Programming Manual

[60 IF N MOD I = 0 THEN 40]
[70 NEXT I] I= 5
[80 PRINT N; "IS PRIME"] 3 IS PRIME

[90 GOTO 40]
[40 N = N + 2] N= 9
[50 FOR I = 3 TO N/2 STEP 2] I= 3
[60 IF N MOD I = 0 THEN 40]
[40 N = N + 2] N= 11
[50 FOR I = 3 TO N/2 STEP 2] I= 3
[60 IF N MOD I = 0 THEN 40]
[70 NEXT I] I= 5 ^C
BREAK AT LINE 70
OK

After execution of the line 10 TRACE command, XYBASIC prints the bracketed
line number and contents of each command before it is executed. If the
command is LET, FOR, NEXT, READ or INPUT, the name and new value of the
modified variable is also printed.

If a program is not working correctly, you can interrupt it with <control-C>, type
TRACE and then CONTinue execution. By following the TRACE you can often
find why your program does not work in the way you expected.

Execution of the UNTRACE command disables the TRACE feature, so you can
TRACE precisely the sections of program you desire. Try changing the program:

45 UNTRACE
75 TRACE
RUN
[20 PRINT 2; "IS PRIME"] 2 IS PRIME

[30 N = 1] N= 1
[40 N = N + 2] N= 3
[45 UNTRACE]
[80 PRINT N; "IS PRIME" 3 IS PRIME

[90 GOTO 40]
[40 N = N + 2] N= 5
[45 UNTRACE]
[80 PRINT N; "IS PRIME" 5 IS PRIME

[90 GOTO 40]
[40 N = N + 2] N= 7
[45 UNTRACE] ^C
BREAK AT LINE 45
OK

XYBASIC Programming Manual Page 83

XYBASIC also disables TRACE whenever you execute a NEW.

If your system supports a LST device such as a lineprinter, you may find it
convenient to use <control-P> and <control-O> to print TRACEs on the printer
rather than on the console.

BREAK and UNBREAK

For some purposes TRACE provides more information than you need; some
bugs are easier to find if you just check what happens when certain lines are
executed or certain variables are changed. The BREAK command gives you a
flexible and powerful tool to do so by letting you set breakpoints on variables or
line numbers. BREAK will greatly aid you in debugging your program and let
you get it running correctly much faster, increasing your productivity and
decreasing programming costs.

To set a breakpoint on the variable I, you just type

BREAK I

Then the value of I will be printed whenever it is changed, whether by a LET,
FOR, NEXT, INPUT or READ command, and the bracketed line number and
contents of the command is also printed. The following example demonstrates
how a variable breakpoint works.

NEW
OK
10 BREAK I
20 I = 1
30 FOR J = 1 TO 10
40 T = I
50 I = I + L
60 L = T
70 NEXT J
RUN
[20 I = 1] I= 1
[50 I = I + L] I= 1
[50 I = I + L] I= 2
[50 I = I + L] I= 3
[50 I = I + L] I= 5
[50 I = I + L] I= 8
[50 I = I + L] I= 13
[50 I = I + L] I= 21
[50 I = I + L] I= 34
[50 I = I + L] I= 55
[50 I = I + L] I= 89
OK

Page 84 XYBASIC Programming Manual

A single BREAK command can set more than one variable breakpoint. Try
changing the program as follows:

10 BREAK I, J
RUN
[20 I = 1] I= 1
[30 FOR J = 1 TO 10] J= 1
[50 I = I + L] I= 1
[70 NEXT J] J= 2
[50 I = I + L] I= 2
[70 NEXT J] J= 3
[50 I = I + L] I= 3
[70 NEXT J] J= 4
[50 I = I + L] I= 5
[70 NEXT J] J= 5
[50 I = I + L] I= 8
[70 NEXT J] J= 6
[50 I = I + L] I= 13
[70 NEXT J] J= 7
[50 I = I + L] I= 21
[70 NEXT J] J= 8
[50 I = I + L] I= 34
[70 NEXT J] J= 9
[50 I = I + L] I= 55
[70 NEXT J] J= 10
[50 I = I + L] I= 89
[70 NEXT J] J= 11
OK

You can use the UNBREAK command to remove a variable breakpoint. Add this:

35 UNBREAK J
RUN
[20 I = 1] I= 1
[30 FOR J = 1 TO 10] J= 1
[50 I = I + L] I= 1
[50 I = I + L] I= 2
[50 I = I + L] I= 3
[50 I = I + L] I= 5
[50 I = I + L] I= 8
[50 I = I + L] I= 13
[50 I = I + L] I= 21
[50 I = I + L] I= 34
[50 I = I + L] I= 55
[50 I = I + L] I= 89
OK

XYBASIC Programming Manual Page 85

You can even set variable breakpoints on array variables. However, you must be
sure to DIMension the array before setting the breakpoint. Change the program
as follows:

5 DIM A(10)
10 BREAK A
35
65 A(J) = I
RUN
[65 A(J) = I] A(1) = 1
[65 A(J) = I] A(2) = 2
[65 A(J) = I] A(3) = 3
[65 A(J) = I] A(4) = 5
[65 A(J) = I] A(5) = 8
[65 A(J) = I] A(6) = 13
[65 A(J) = I] A(7) = 21
[65 A(J) = I] A(8) = 34
[65 A(J) = I] A(9) = 55
[65 A(J) = I] A(10) = 89
OK

Another form of BREAK lets you set breakpoints on line numbers instead of
variables. XYBASIC then prints the bracketed line number and contents
whenever the line is executed. Change the program again to see how a line
breakpoint works.

5
10 BREAK 50
65
RUN
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
[50 I = I + L]
OK

With line breakpoints you have the option of making the break occur every few
times the line is executed, rather than every time. For example:

10 BREAK 50, 3
RUN
[50 I = I + L]
[50 I = I + L]

Page 86 XYBASIC Programming Manual

[50 I = I + L]
OK

The break message is now printed every third time the line is executed. When
setting a line break you may also specify a variable or list of variables, preceded
by a semicolon. The values of the variables in the list are then printed whenever
the break occurs.

10 BREAK 50; I
RUN
[50 I = I + L] I= 1
[50 I = I + L] I= 1
[50 I = I + L] I= 2
[50 I = I + L] I= 3
[50 I = I + L] I= 5
[50 I = I + L] I= 8
[50 I = I + L] I= 13
[50 I = I + L] I= 21
[50 I = I + L] I= 34
[50 I = I + L] I= 55
10 BREAK 50, 4; I, J
RUN
[50 I = I + L] I= 3 J= 4
[50 I = I + L] I= 21 J= 8
OK

Finally, you can use the $ option to set a line break which returns you to direct
mode (rather than continuing execution) when the line break occurs.

10 BREAK 50; $
RUN

BREAK AT LINE 50
OK

The $ option can be used in conjunction with the other BREAK options.

10 BREAK 50, 5; I, J; $
RUN
[50 I = I + L] I= 5 J= 5
BREAK AT LINE 50
OK

UNBREAK lets you remove line breakpoints as well as variable breakpoints.

10 BREAK 50
55 UNBREAK 50
RUN
[50 I = I + L]

XYBASIC Programming Manual Page 87

OK

If you just type UNBREAK without giving a line number or variable name, it
removes all breakpoints. CLEAR also removes all breakpoints.

Page 88 XYBASIC Programming Manual

Section 8: Bit Manipulation and Control Features

With the powerful bit manipulation and control features of XYBASIC you can
perform tasks which would otherwise require assembly language programs.
Additional commands make it possible to perform real time delays without a
real time clock.

Integer Representations

XYBASIC lets you specify integers in the decimal notation you normally use, but
it actually stores them in a notation which is more convenient (and efficient) for
your computer. The memory of your 8080 system consists of many bytes, each
capable of storing 8 bits, i.e. 2 ^ 8 = 256 possible values. XYBASIC uses two
bytes (16 bits) to store 2 ^ 16 = 65536 Possible integer values, and uses those
values to represent integers between -32768 and 32767. Positive integers
between 0 and 32767 are stored in their binary representation; for example, 4
decimal is 0000 0000 0000 0100 binary and 32766 decimal is 0111 1111 1111
1110 binary. Integers between -32768 and -1 are stored in two’s complement
representation, found by complementing each digit of the binary representation
of the integer’s absolute value, and then adding 1 to the result. For example, -4
decimal is 1111 11 11 1111 1011 + 1 = 1111 1111 1111 1100 binary, and
-32766 decimal is 1000 0000 0000 0001 + 1 = 1000 0000 0000 0010 binary.

In keeping with standard 8080 conventions the rightmost (least significant) bit
of an integer value is called bit 0, and the leftmost (most significant) bit is called
bit 15. Many of the bit manipulation functions described below use bit numbers
to specify bits to be examined or changed.

Sometimes you may want to consider the representation of an integer to be an
unsigned 16-bit value between 0 and 65535, so that for example 1000 0000
0000 0010 binary represents 32770 instead of -32766. In particular,
commands or functions (like POKE and PEEK) which take memory addresses as
arguments consider such arguments to be unsigned 16-bit representations. You
can PRINT the unsigned value of a formula with the function UNS, described in
Section 3.

In Extended XYBASIC, any floating point values you use as arguments to
control and bit manipulation functions are automatically truncated to integer
values, as described under Conversions in Section 3.

TEST

The TEST function allows you to examine a specified bit in an integer value,
returning the value (zero or one) of the bit. The first argument of TEST specifies
the variable or formula you wish to TEST, the second which bit you wish to look

XYBASIC Programming Manual Page 89

at. Suppose for example that you want to look at bit 2 of I, which contains 7
(binary &111). Just type

PRINT TEST (I,2)
1
OK

The following binary conversion program using TEST will show you how useful
it ccan be.

NEW
OK
10 PRINT "BINARY CONVERSIONS"
20 INPUT "NUMBER TO CONVERT" N
30 FOR I = 15 TO 0 STEP -1
40 PRINT TEST(N,I);
50 NEXT I
60 PRINT
70 GOTO 20
RUN
BINARY CONVERSIONS
NUMBER TO CONVERT? 45
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
NUMBER TO CONVERT? #FF
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
NUMBER T0 CONVERT? -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NUMBER TO CONVERT? 1025
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
NUMBER TO CONVERT? ^C
BREAK AT LINE 20
OK

This program uses TEST to find the binary representation of the number you
type. in. Since XYBASIC accepts hexadecimal constants as well as decimal, this
program converts either decimal or hexadecimal to binary, as the examples
show. You can also convert numbers to binary by using the function BIN$,
described below.

Since representations of integer values have 16 bits in XYBASIC, the second
argument of TEST is evaluated mod 16.

Logical Operators

XYBASIC lets you use the logical operators AND, OR (inclusive or), XOR
(exclusive or) and NOT. Each operates bitwise on its 16-bit integer arguments.
That is, the value of bit i of A AND B will be the value of bit i of A ANDed with
the value of bit i of B, where i = 0, 1, ..., 15. The truth table for each bit is:

Page 90 XYBASIC Programming Manual

A B A AND B A OR B A XOR B NOT A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 1 0

If you think of 1 as representing true and 0 as representing false, you can see
that A AND B is true when both A and B are true; A OR B is true when either is
true; A XOR B is true when exactly one is true; and NOT A is true when A is
false.

You may want to use logical operators for two different purposes. First, they let
you build complicated conditions in logical formulas. For example,

IF X = 0 AND (Y = 1 OR Z <= 10) THEN GOSUB 100

allows you to test for several cases with a single IF command. Second, they
perform bit manipulation. For example, the Extended XYBASIC command

LET I% = (J% AND #F000) OR #FFF

sets the most significant four bits of I% to the corresponding bits of J%, and
sets the other twelve bits of I% to 1. Since Integer XYBASIC only allows integer
variables, this command corresponds to the Integer XYBASIC command

LET I = (J AND #F000) OR #FFF

The following program demonstrates the logical operators by printing the
representations of two values and of the results of applying logical operators to
them.

NEW
OK
10 INPUT "TYPE TWO NUMBERS" A, B
20 PRINT A, " IS", : TEMP = A : GOSUB 200
30 PRINT B, " IS", : TEMP = B : GOSUB 200
40 PRINT A; "AND"; B; "IS", : TEMP = A AND B : GOSUB 200
50 PRINT A; " OR"; B; "IS", : TEMP = A OR B : GOSUB 200
60 PRINT A; "XOR"; B; "IS", : TEMP = A XOR B : GOSUB 200
70 PRINT "NOT "; A; " IS", : TEMP = NOT A : GOSUB 200
80 GOTO 10
200 REM SUBROUTINE TO PERFORM BINARY CONVERSIONS
210 FOR I = 15 TO 0 STEP -1
220 PRINT TEST(TEMP, I);
230 NEXT I
240 PRINT
250 RETURN
RUN

XYBASIC Programming Manual Page 91

TYPE TWO NUMBERS? 15,255
15 IS 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
255 IS 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
15 AND 255 IS 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
15 OR 255 IS 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
15 XOR 255 IS 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
NOT 15 IS 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
TYPE TWO NUMBERS? -1,2
-1 IS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
-1 AND 2 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
-1 OR 2 IS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-1 XOR 2 IS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
NOT -1 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TYPE TWO NUMBERS? #FFE,65
-32 IS 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
65 IS 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
-32 AND 65 IS 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
-32 OR 65 IS 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1
-32 XOR 65 IS 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1
NOT -32 IS 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
TYPE TWO NUMBERS? ^C
BREAK AT LINE 10
OK

SET and RESET

In a control systems environment you often need to turn on or turn off a
particular bit. XYBASIC lets you do so with the SET and RESET functions. The
first argument of each is an integer value, the second is the number of the bit
you wish to set. Try the following:

LET X = SET (0,4)
PRINT X
16
OK

Here XYBASIC SET bit 4 (remember that the least significant bit is bit 0) to 1.
RESET changes the specified bit to zero instead of one, so now try

LET X = RESET (X,4)
PRINT X
0
OK

Here XYBASIC changed bit 4 of X While leaving all other bits unchanged. In
both SET and RESET the second argument is evaluated mod 16, since the
range of bit numbers is 0 through 15.

Page 92 XYBASIC Programming Manual

ROTATE, RSHIFT and LSHIFT

If you need to use only certain bits of an integer’s value, you might want to use
one of the XYBASIC functions ROTATE (for right rotate), RSHIFT and LSHIFT
(for right shift and left shift). These functions rotate or shift their first argument
the number of binary places specified by the second. Try this:

PRINT ROTATE (1,2)
16384
OK
PRINT LSHIFT (5,3)
40
OK

In the first example XYBASIC ROTATEd 1 right two places to give 16384
(#4000); in the second XYBASIC shifted 5 (binary &101) left three places to give
40 (&10 1000). The following program uses a binary conversion routine to
demonstrate ROTATE, LSHIFT and RSHIFT; to exit type <control-C>.

NEW
OK
10 INPUT "NUMBER TO BE SHIFTED" NUM
20 INPUT "NUMBER OF PLACES" P
30 PRINT NUM; " IS ";
40 TEMP = NUM : GOSUB 200
50 PRINT NUM; "RSHIFTED" P; "IS";
60 TEMP = RSHIFT(NUM, P) : GOSUB 200
70 PRINT NUM; "LSHIFTED"; P; "IS";
80 TEMP = LSHIFT(NUM, P) : GOSUB 200
90 PRINT NUM; "ROTATED "; P; "IS";
100 TEMP = ROTATE(NUM, P) : GOSUB 200
110 PRINT
120 GOTO 10
200 REM SUBROUTINE TO CONVERT TEMP TO BINARY
210 FOR I = 15 TO 0 STEP -1
220 PRINT TEST(TEMP,I);
230 NEXT I
240 PRINT
250 RETURN
RUN
NUMBER TO BE SHIFTED? 1
NUMBER OF PLACES? 2
1 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 RSHIFTED 2 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 LSHIFTED 2 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 ROTATED 2 IS 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XYBASIC Programming Manual Page 93

NUMBER TO BE SHIFTED? 400
NUMBER OF PLACES? 9
400 IS 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
400 RSHIFTED 9 IS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
400 LSHIFTED 9 IS 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
400 ROTATED 9 IS 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

NUMBER TO BE SHIFTED? #FF
NUMBER OF PLACES? 3
255 IS 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
255 RSHIFTED 3 IS 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
255 LSHIFTED 3 IS 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
255 ROTATED 3 IS 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1

NUMBER TO BE SHIFTED? ^C
BREAK AT LINE 10
OK

The next example uses RSHIFT to print the hexadecimal representation of a
number. One digit of the hex representation is PRINTed each time the
subroutine at line 100 is called.

NEW
OK
10 INPUT "NUMBER TO CONVERT" N
20 PRINT N; "IN HEX IS ";
30 FOR I = 12 TO 0 STEP -4
40 GOSUB 100
50 NEXT I
60 PRINT
70 GOTO 10
100 DIGIT = RSHIFT (N,I) AND #F
110 IF DIGIT < 10 THEN PRINT CHR$(48 + DIGIT);
120 IF DIGIT >= 10 THEN PRINT CHR$(55 + DIGIT);
130 RETURN
RUN
NUMBER TO CONVERT? 255
255 IN HEX IS 00FF
NUMBER TO CONVERT? -1
-1 IN HEX IS FFFF
NUMBER TO CONVERT? 11
11 IN HEX IS 000B
NUMBER TO CONVERT? ^C
BREAK AT LINE 10
OK

Page 94 XYBASIC Programming Manual

BCD and BIN

Many instruments (e.g. digital thermometers and voltmeters) output their
measurements in BCD, Binary Coded Decimal. BCD is a representation in
which each four bits represent a decimal digit between 0 and 9. Since XYBASIC
uses 16-bit integer values, a value can represent 4 BCD digits or 16 binary
digits. For example, #1234 represents 4660 if considered as a binary
representation, but 1234 if considered as a BCD representation. The functions
BCD and BIN are provided to convert between representations. BIN takes a BCD
argument and converts it to a binary number, while BCD takes a binary
argument and converts it to its BCD representation.

The following program demonstrates BCD and BIN by printing the binary
representations of NUM, BCD(NUM) and BIN(NUM) .

NEW
OK
10 INPUT "NUMBER" NUM
20 PRINT "REP OF"; NUM; "IS";
30 TEMP = NUM
40 GOSUB 200
50 PRINT "BCD OF"; NUM; "IS";
60 TEMP = BCD(NUM)
70 GOSUB 200
80 PRINT "BIN OF"; NUM; "IS";
90 TEMP = BIN(NUM)
100 GOSUB 200
110 GOTO 10
200 REM SUBROUTINE TO PRINT BINARY REPRESENTATION
210 FOR I = 15 TO 0 STEP -1
220 PRINT TEST(TEMP, I);
230 NEXT I
240 PRINT
250 RETURN
RUN
NUMBER? 17
REP OF 17 IS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
BCD OF 17 IS 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
BIN OF 17 IS 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
NUMBER? 25
REP OF 25 IS 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
BCD OF 25 IS 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
BIN OF 25 IS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
NUMBER? 1025
REP OF 1025 IS 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
BCD OF 1025 IS 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1
BIN OF 1025 IS 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1

XYBASIC Programming Manual Page 95

NUMBER? 950
REP OF 950 IS 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0
BCD OF 950 IS 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0
BIN OF 950 IS

FC ERROR: 90 TEMP = BIN(NUM)

OK

If the argument to BIN is not a legal BCD number (i.e. one of its 4-bit
components is not a legal decimal digit), an FC (Function Call) error will occur.
Similarly, if the argument to BIN is not convertible to a legal 4-digit BCD
number (i.e. its value is less than 0 or greater than 9999), an FC error will
occur.

HEX$, OCT$ and BIN$

The Extended XYBASIC functions HEX$, OCT$ and BIN$ convert integers to
hexadecimal, octal and binary representations.

Each of the conversion functions HEX$, OCT$ and BIN$ takes an integer
argument and returns a string containing the hexadecimal, octal or binary
representation of the argument’s value. The following sample program
demonstrates the use of these functions.

NEW
OK
10 INPUT NUMBER
20 PRINT "THE DECIMAL NUMBER" NUMBER "IS:"
30 PRINT TAB(30); HEX$(NUMBER), "IN HEX,"
40 PRINT TAB(30); OCT$(NUMBER), "IN OCTAL, AND"
50 PRINT TAB(30); BIN$(NUMBER), "IN BINARY."
60 GOTO 10
RUN
? 170
THE DECIMAL NUMBER 170 IS:

AA IN HEX,
252 IN OCTAL, AND
10101010 IN BINARY.

? 512
THE DECIMAL NUMBER 512 IS:

200 IN HEX,
1000 IN OCTAL, AND
1000000000 IN BINARY.

? ^C
BREAK AT LINE 10
OK

Page 96 XYBASIC Programming Manual

Since each conversion function returns a string value, the converted result may
be manipulated as desired with other string functions.

MSBYTE, LSBYTE and JOIN

XYBASIC stores integer values internally in 16-bit representations, but the
8080 uses a byte of 8 bits for input, output and data. The functions MSBYTE
and LSBYTE allow you to take apart 16-bit integer values into two 8-bit
components.

-----	-----	- -	-----	-----	-----	-----	- -	-----	-----
Bit	Bit	...	Bit	Bit	Bit	Bit	...	Bit	Bit
15	14	...	9	8	7	6	...	1	0
-----	-----	- -	-----	-----	-----	-----	- -	-----	-----
Most Significant Byte	Least Significant Byte								
MSBYTE	LSBYTE								

Assume I = 1110 1101 1010 0110 binary. Then MSBYTE (I) = 1110 1101 and
LSBYTE (I) = 1010 0110.

Try the following program to get a feeling for MSBYTE and LSBYTE.

NEW
OK
10 FOR I = 0 TO 1024 STEP 64
20 PRINT I, MSBYTE(I), LSBYTE(I)
30 NEXT I
OK
RUN
0 0 0
64 0 64
128 0 128
192 0 192
256 1 0
320 1 64
384 1 128
448 1 192
512 2 0
576 2 64
640 2 128
704 2 192
768 3 0
832 3 64
896 3 128
960 3 192
1024 4 0

OK

XYBASIC Programming Manual Page 97

Conversely, the JOIN operator lets you concatenate two 8-bit quantities into a
16-bit quantity. For example, say

PRINT 1 JOIN 2
258
OK
PRINT #FF JOIN #FF
-1
OK

Here 1 (binary &0000 0001) and 2 (binary &0000 0010) were JOINed to give
258 (binary &0000 0001 0000 0010). Then #FF and #FF were JOINed to give -1
(#FFFF). A BY (BYte) error will occur if either argument of JOIN is not an 8-bit
quantity.

The following example uses the OUT command described in Section 8 to show
how useful MSBYTE and LSBYTE can be in process control.

Example:
Arnie Zintel of the Margarito Button Company uses an 8080 to control his
button assembly line. He wants to send an increasing ramp to the digital to
analog converter, which gets a 16-bit number in two 8-bit bytes from ports 0
and 1. He writes the following XYBASIC program:

NEW
10 DEF INT I
20 FOR I = 1 TO 1000
30 OUT 0,LSBYTE (I)
40 OUT 1,MSBYTE (I)
50 NEXT I

This program obtains the necessary 8-bit quantities with the MSBYTE and
LSBYTE functions, which are then used as arguments of the OUT command.

GET

The GET function lets you check whether a character has been typed while a
program is running. If a character has been typed, GET returns its ASCII value,
as given in Appendix 5. GET returns 0 if no character has been typed. You can
use GET to define control characters to monitor program execution without
using <control-C> and CONT. The following simple example just increments the
value in I, and prints its value whenever you type <control-T> (ASCII 20).

NEW
OK
10 IF GET=20 THEN GOSUB100
20 I = I + 1

Page 98 XYBASIC Programming Manual

30 GOTO 10
100 PRINTI;
110 RETURN
RUN
46 100 126 169 183 201 ^C
BREAK AT LINE 20
OK

Since XYBASIC automatically removes the parity bit from any character it
reads, you cannot GET a value greater than 127 (7F hexadecimal). And of
course you should not try to GET characters such as <control-C> which have
special meanings to XYBASIC.

You might want to use GET to let the user answer a question with Y or N. For
example, the MOD program in Section 3 could be modified as follows:

NEW
OK
10 INPUT "A, B =" A, B
20 PRINT A; "\"; B; "="; A \ B
30 PRINT A; "MOD"; B; "="; A MOD B
40 PRINT "ANOTHER (Y OR N)?";
50 X = GET
60 IF X = 0 THEN 10
70 PRINT CHR$(X)
80 IF X = 89 THEN 10
RUN
A, B =? 10,3
10 \ 3 = 3
10 MOD 3 = 1
ANOTHER (Y OR N)?Y
A, B =? 15,4
15 \ 4 = 3
15 MOD 4 = 3
ANOTHER (Y OR N)?N

OK

Here XYBASIC executes lines 50 and 60 until a character is typed, making X =
0 false. Then the typed character is echoed with CHR$, and if the character is Y
(ASCII 89) the program returns to line 10. Notice that the program would NOT
work correctly if lines 50 through 80 were replaced by

50
60 IF GET 0 THEN 60
70 PRINT CHR$(GET)
80 IF GET = 89 THEN 10

XYBASIC Programming Manual Page 99

In this case line 60 waits for a character, but its value is not saved and line 70
tries to GET the next character (and probably PRINTS ASCII O, a null
character). Then line 80 tries to GET another character.

In Extended XYBASIC you can use the string function GET$ as well as the
numeric function GET. GET$ is described in Section 4.

DELAY

For many applications you may want your computer to act like a stop watch,
measuring a certain amount of time. XYBASIC allows you to do this with the
DELAY command. Its first argument specifies the number of minutes you wish
to delay, its second the number of seconds, and its third the number of
hundredths of seconds. For instance,

DELAY 0, 4, 50

will delay for four and one-half seconds. The second and third arguments are
optional.

You can interrupt a DELAY with <control-C>, suspend it with <control-S>, or
abort it and proceed with the next instruction by typing any other character.
ENABLEd interrupts (described in Section 10) are not active during a DELAY.

Unless you recalibrate DELAY with the TIME command, XYBASIC assumes
your machine to be a standard 2 MHz 8080 with 500 ns memory and no wait
states. If your machine is nonstandard, DELAY will not work correctly until you
use TIME to calibrate it!

The following program gets the current time from the user and then PRINTs the
time at intervals of roughly five seconds. Of course the overhead of executing
other XYBASIC instructions makes the time between successive exections of the
line 20 PRINT command slightly longer than five seconds; the DELAY in line 70
could naturally be modified to compensate for the overhead.

NEW
OK
10 INPUT "TIME" H, M, S
20 PRINT H; ":"; M; ":"; S
30 S = S + 5
40 IF S >= 60 THEN GOSUB 100
50 IF M >= 60 THEN GOSUB 200
60 IF H >= 24 THEN H = H - 24
70 DELAY 0, 5
80 GOTO 20
100 S = S - 60 : M = M + 1 : RETURN
200 M = M - 60 : H = H + 1 : RETURN
RUN

Page 100 XYBASIC Programming Manual

TIME? 7,15,45
7 : 15 : 45
7 : 15 : 50
7 : 15 : 55
7 : 16 : O
7 : 16 : 5
^C
BREAK AT LINE 70
OK

TIME

The TIME statement calibrates the DELAY command for systems which run at
different speeds than a standard 8080 with a 2 MHz clock and 500 ns
memories; this includes systems using the Z-80, 8085, and NEC 8080. TIME
prompts you with a bell, audible on most terminals, and then waits for two
carriage returns separated by exactly 60 seconds. This 60 second interval is
used as the standard for executing subsequent DELAY commands. If you type
<control-C> during execution of TIME, the previous calibration is retained.

XYBASIC Programming Manual Page 101

Section 9: Machine Control Functions

XYBASIC is designed to be especially useful for control applications. The
functions described in this section let you examine and control external devices
connected to your computer in a particularly simple and straightforward
fashion, and to examine and modify specific locations in your computer’s
memory. When combined with the bit manipulation features discussed in
Section 8, these functions let you write easily understood XYBASIC control
programs instead of assembly language programs. And by interacting with
XYBASIC you can get your control programs running correctly much more
quickly.

OUT

An important feature of XYBASIC is the ability to communicate with external
devices, i.e. to perform port input and output. The OUT command and the IN
function work like the assembly language commands OUT and IN. For instance,
to OUTput the value 1 to port 55 you just say

OUT 55,1

Either argument can be any formula, but each must evaluate to an 8 bit
quantity or else a BY (BYte) error will occur.

Example:
Buck Mulligan works at XYZ Manufacturing Co., which just bought an 8080 to
control their widget production. Output port 17 is supposed to control the
widget former, which uses a nonstandard connector. Buck uses XYBASIC to
help him learn which connector pin corresponds to which bit on the port.

NEW
10 INPUT "BIT NUMBER" 1
20 OUT 1?, SET (0, I)
30 OUT 1?, 0
40 GOTO 20

After typing RUN, Buck responds to the INPUT prompt at line 10 with a bit
number between 0 and 7. XYBASIC then turns the desired bit of output port 17
on and off while Buck checks the connector pins with a probe. After he finds
and labels the pin, he types <control-C> and RUN to test another bit.

Page 102 XYBASIC Programming Manual

IN

The IN function allows you to perform port input, the equivalent of an assembly
language IN instruction. If you say

LET X = IN (10)

XYBASIC will find the value on input port 10 when the command is executed
and assign it to the variable X. The input port number can be any formula
(allowing the program itself to determine which port to read), but it must
evaluate to an 8 bit quantity or a BY (BYte) error will occur.

Example:
Harry Matthews is in charge of widget quality control for XYZ "
. "Manufacturing. He wants to measure widget resistance with a 16-bit digital
ohmmeter attached to input ports 12 and 13, but like Buck Mulligan (in the
OUT example above) he is confused about which bit each connector pin
represents. Harry uses the following XYBASIC program:

NEW
10 X = IN (12) JOIN IN (13)
20 IF X = #FFFF THEN 10
30 FOR I = 0 TO 15
40 IF TEST (X, I) = 0 THEN PRINT "^GBIT #"; I
50 NEXT I

Line 10 constructs the value read from the ohmmeter ports, and line 20 loops
until Harry puts a signal on a connector pin. Then the FOR loop starting at line
30 rings a bell (with <control-G>) and tells Harry which bit the pin represents.

PEEK

The PEEK function allows you to examine any memory location in your
computer system. If you use memory mapped I/O (that is, if specific locations
are used for input and output), you can use PEEK to perform inputs. To find
out what is in location 10 of your computer’s memory, just type

PRINT PEEK (10)

and XYBASIC will print the current value of location 10. The PEEK function will
always return an 8 bit value (i.e. a number between 0 and 255).

The following program determines the values of the first 10 locations in memory
and prints them on the console. Note that I goes from 0 to 9, since the address
space of the 8080 starts at location 0 by convention.

XYBASIC Programming Manual Page 103

NEW
10 FOR I = 0 TO 9 ’SET UP LOOP
20 PRINT "LOCATION"; I; "CONTAINS"; PEEK (I) ’PRINT VALUE
30 NEXT I ’DO THE NEXT ONE

Although the largest integer value that can be represented in XYBASIC is
32767, you can PEEK at locations above 32767 by using negative integer
arguments, because PEEK considers its argument to be an unsigned integer
representation. You can use the UNS function described in Section 3 to see the
actual location that PEEK will examine, as the following program shows.

NEW
OK
10 FOR I=-32767 TO -1
20 PRINT I, UNS(I)
30 NEXT I
-32767 32769
-32766 32770
-32765 32771
^C
BREAK AT LINE 20
OK

Use <control-S> to suspend execution so you can look at the values, and use
<control-C> when you wish to exit from this program.

POKE

In addition to letting you to examine memory locations with the PEEK function,
XYBASIC allows you to put data directly into memory with the POKE command.
If your system uses memory mapped I/O, you can use POKE to perform output.
To modify location 4 to contain 0, just say

POKE 4,0

Don’t try this unless you are sure modifying location 4 will not endanger your
system! POKE is very dangerous -- you can easily modify the operating system
or the XYBASIC interpreter itself with careless POKEing, with unpredictable
consequences -- so be extremely careful!

Example:
Herman Wayl has just bought a new memory board for his 8080 and wants to
test it. It is an 8K board which occupies address space 16K to 24K. Herman
tests it for bit failures with the following program.

NEW
10 FOR I = 16*1024 TO 24*1024 - 1 ’SET UP LOOP PARAMETER
20 N = 0 ’CLEAR TEST VALUE BITS

Page 104 XYBASIC Programming Manual

30 GOSUB 100 ’CHECK FOR ERROR
40 N = #FF ’SET TEST VALUE BITS
50 GOSUB 100 ’CHECK FOR ERROR
60 NEXT I ’AND TRY NEXT LOCATION
70 PRINT "TEST CONCLUDED" ’DONE
80 END
100 REM SUBROUTINE TO TEST LOCATION I WITH VALUE N
110 POKE I, N
120 IF PEEK (I) = N THEN RETURN ’VALUE IS CORRECT
130 PRINT "FAILURE AT LOCATION"; I; ":"; PEEK (I); "SHOULD BE"; N
140 RETURN

This program POKEs a 0 into a memory location on the new board, then PEEKs
to check that the data reads back correctly and PRINTS an appropriate error
message if it does not. Then the test is repeated with #FF (all 1’s). After testing
all memory locations, the program prints a concluding message.

SENSE

The SENSE function allows you to find the value of a single bit of an input port,
and might for example be used to find the status of a switch attached to a port.
To find the status of bit 14 on port 7, just say

PRINT SENSE (7,4)

or

LET X = SENSE (7,4)

The latter command assigns the value (0 or 1) of bit 14 on port 7 to the variable
X. A BY (BYte) error will occur if the first argument is not between 0 and 255,
since the 8080 only has 256 input ports. Try the following program; note that
the result of RUNning it will vary depending on the use of port 5.

NEW
OK
10 FOR I = 0 TO 7
20 PRINT SENSE(5,I);
30 NEXT I
RUN
1 0 1 1 0 0 0 0
OK

XYBASIC Programming Manual Page 105

WAIT

Sometimes you want your program to wait (suspend processing) until an
external event signals it to continue. This event could be a switch closing, a
temperature exceeding a given value, or an electronic device indicating that it is
through with a task. The WAIT command allows you to do this, WAITing until a
given input port has a given value before executing the next command in your
program. For example, if you say

WAIT 10,0

then XYBASIC waits until the value on input port 10 is 0 before responding
with its OK prompt. The optional third argument of WAIT is a mask which lets
you ignore the values of bits you don’t care about when trying to match the
value. Bits set to 1 in the mask are ignored, so

WAIT 10,0,&11111100

will wait until bits 0 and 1 of input port 10 are 0, ignoring bits 2-7. Notice that
the mask byte contains 0 in bits which are significant and 1 in bits which are
ignored, not vice versa.

The optional fourth argument of WAIT is $ (dollar sign), which tells XYBASIC
that the WAIT should end if the value of ANY unmasked bit on the port matches
the given value. Thus

WAIT 10,&10,&11111100

tells XYBASIC to WAIT until either bit 0 of input port 10 is 0, or bit 1 of input
port 10 is 1, or both. As before, the values of all bits set to 1 in the mask are
ignored.

Although normal execution stops during a WAIT, ENABLEd interrupts (see
Section 10 below) remain active, and special characters such as <control-C>
and <control-S> have their usual effect.

Example:
Emil Post works (sometimes) at the Do It Later Corporation. He wants his 8080
to warn him when his boss arrives, which trips a switch on one of five doors.
The switches are connected to bits 0-4 of input port 5, and go high (i.e. become
1) when a door opens. Emil uses the following program:

NEW
OK
10 WAIT 5,&11111,&11100000,$
20 PRINT "WAKE UP! HERE HE COMES!"

Page 106 XYBASIC Programming Manual

Line 10 WAITs until port 5 has a 1 on any of bits 0-4. The mask indicates that
bits 5-7 are ignored, and the option indicates that the WAIT ends when ANY of
the doors are opened. Notice how simple it is to specify values and masks by
using binary literals.

XYBASIC Programming Manual Page 107

Section 10: Interrupts

The ENABLE feature gives XYBASIC the ability to handle interrupts and thus
allows concurrent processing; you can continually check for the occurrence of
an event while running a program.

ENABLE

Sometimes you may want to monitor or control external devices continuously
while simultaneously executing a program. XYBASIC lets you use the ENABLE
command to implement interrupts which do so. ENABLE uses the same syntax
as the WAIT command, described in Section 9 above. Its operation is similar to
WAIT, except that XYBASIC does not suspend processing until the condition
you specify is fulfilled. Instead, the condition is checked before executing each
program command (although no checking occurs before direct mode commands
are executed). If it is not fulfilled, the program command is executed. If it is
fulfilled, program execution is interrupted and the subroutine located at the line
number specified in the ENABLE is executed instead. When the routine
RETURNs, the interrupted program is resumed.

For example, suppose you wish to perform some computations and
simultaneously print data on a lineprinter as fast as possible. If bit 0 of output
port 6 becomes 1 when your printer is ready to receive more data, you can use
ENABLE as in the following program fragment.

NEW
10 ENABLE 100, 6, 1, &11111110
20 GOTO 200
100 ’SUBROUTINE TO SEND NEXT DATA TO PRINTER
...
190 RETURN
200 ’MAIN PROGRAM
...

Here the main program is executed until bit 0 of port 6 becomes 1. Then the
program is interrupted, and the subroutine at line 100 sends data to the
printer. The RETURN of line 190 causes the main program to be resumed where
it was interrupted.

Whenever an interrupt occurs, it is suspended (that is, its condition is not
checked) until the return from the specified routine; this prevents the interrupt
from interrupting itself. You must be careful not to RETURN from an interrupt
routine unless your program has either DISABLEd the interrupt (as explained
below) or done something to make the ENABLE condition false. Otherwise the
interrupt will occur again immediately after the RETURN, and only the interrupt
routine will be executed. Interrupts remain active during WAIT but not during

Page 108 XYBASIC Programming Manual

TIME and DELAY.

You may not ENABLE more than eight interrupts at once; if you try to ENABLE
more than eight, an EN (ENABLE) error will occur. The order of ENABLEing
determines the priority of the interrupts; the conditions are tested in the order
of the ENABLE commands. ENABLE is legal only in program mode; an ID
(Illegal Direct) error will occur if you use it in direct mode,

Since XYBASIC tests the condition specified by each interrupt before executing
each command, interrupts slow down XYBASIC considerably. You should notice
that ENABLE interrupts are controlled by software, not using the hardware
interrupt facilities of your computer. Of course you can use the CALL and
SCALL commands to access machine language routines for activation and
servicing of hardware interrupts.

DISABLE

You can deactivate all ENABLEd interrupts by just saying DISABLE.
Alternatively, you can deactivate a specific interrupt:

DISABLE 10

disables only the interrupt which you ENABLEd in line 10. If you try to
DISABLE a nonexistent interrupt, an EN error will occur. XYBASIC also
disables all interrupts when you execute a RUN.

Example:
In the WAIT example of Section 9, Emil Post used the following program to warn
him of the arrival of his boss:

NEW
10 WAIT 5, &11111, &11100000, $
20 PRINT "WAKE UP! HERE HE COMES!"

Emil has now been given a XYBASIC program which plays blackjack, but he
does not want his boss to catch him playing. He therefore uses ENABLE instead
of WAIT, allowing him to play blackjack and still be warned when his boss
arrives.

NEW
10 ENABLE 20, 5, &11111, &11100000, $
15 GOTO 100
20 PRINT "BET FAST! HERE HE COMES!"
25 DISABLE 10
30 RETURN
100 ’START OF BLACKJACK PROGRAM
...

XYBASIC Programming Manual Page 109

The ENABLE command of line 10 specifies that an interrupt will occur when the
value of any of bits 0 through 4 of input port 5 becomes 1. After the ENABLE
the program plays blackjack with Emil. When his boss enters, one of bits of port
5 becomes 1 and an interrupt occurs, transferring control to the subroutine at
line 20. A warning message is printed by line 20. Line 25 DISABLEs the
interrupt, so that the message will not be repeated even though one of the bits
of port 5 is still 1, and line 30 RETURNs control to the blackjack program at the
point it was interrupted.

Page 110 XYBASIC Programming Manual

Section 11: Machine Language Linkage

You may find it necessary to perform a task with a routine written in assembly
language. You might need the speed of an assembly language routine, or need
to conserve memory, or need to use a machine control feature not provided by
XYBASIC, or you may want to use an already written assembly language
program (for example to process hardware interrupts). XYBASIC lets you access
machine language routines stored anywhere in your computer’s memory with
the CALL and SCALL commands.

CALL

CALL lets you access an assembly language routine. For example,

CALL #A000

executes an assembly language CALL to the routine at location 0A000H. When
the routine executes an assembly language RETurn instruction, the next
command after the CALL in the XYBASIC program is performed. The location
may be specified by any numeric formula.

One of the few machine control functions which is not directly executable under
XYBASIC is to enable and disable the computer’s hardware interrupt facility.
You can accomplish this with machine language linkage. Suppose you have the
following machine language routines stored in ROM at location OFCOOH.

FC00 ORG 0F000H ;ROM ROUTINE ADDRESS
FC00 FB ENAB: EI ;ENABLE INTERRUPTS
FC01 C9 RET ;RETURN TO XYBASIC
FC02 F3 DISAB: DI ;DISABLE INTERRUPTS
FC03 C9 RET ;RETURN TO XYBASIC

These routines may be called with the CALL command. For example,

CALL #FC00

will enable hardware interrupts. The following program fragment assigns the
addresses of the machine language routines to variables to make the function of
the CALLs clear.

10 ENAB = #FC00 ’ADDRESS OF ENABLE ROUTINE
20 DISAB = #FC02 ’ADDRESS OF DISABLE ROUTINE
...
100 CALL DISAB ’DISABLE INTERRUPTS FOR SENSITIVE CODE

XYBASIC Programming Manual Page 111

...
190 CALL ENAB ’ENABLE INTERRUPTS
...

This example did not require the passing of information between XYBASIC and
machine language. But it is often necessary to pass information to a machine
language routine.

To make CALL more useful, XYBASIC lets you pass information, called
parameters. You can specify as many parameters as you wish on the same line
as the CALL command. For example (in Extended XYBASIC):

CALL #A000, I%, S$, Y(1,2),*Z

Each parameter may be either a variable reference, or the character * followed
by an array variable name. To find the value of a parameter, your machine
language routine calls the subroutine GTPAR, which returns information about
the next parameter in the CALL command’s parameter list. Chapter II describes
how to access GTPAR in your version of XYBASIC. You should execute a
machine language CALL to location 103H in CP/M versions, location 3283H in
ISIS-II versions, or location 103H in Custom I/O versions of XYBASIC.

GTPAR returns the type of the next parameter in the A register: 0 if no more
parameters, 1 if integer, 2 if string, 3 if floating. The B register returns the
number of bytes in the parameter’s value: 2 if integer, 3 if string, 4 if floating, as
explained in greater detail below. The C register returns the number of
dimensions of the parameter: 0 if a simple variable or an array element, n if the
parameter is * followed by the name of an n-dimensional array variable. For
simple variables and array elements, HL returns the address of the parameter’s
first value byte. For arrays, DE returns the address of the first dimension byte
and HL the address of the first value byte.

For GTPAR to be useful you need to understand how XYBASIC stores values.
Integer values are represented by two bytes in two’s complement representation,
with the least significant byte first in keeping with 8080 convention. For
example, the integer value 10 is stored as the two bytes 0AH, 00H; the integer
value -10 is stored as the two bytes 0F6H, 0FFH.

String values are stored in three bytes. The first contains the length of the
string. The second and third are meaningless if the length is 0 (null string);
otherwise they give the location (in string space) of the first character of the
string. Successive characters are stored in successive locations in string space.
For example, the string value "ABCD" contains 4 characters, so it is stored as a
length byte containing 4 followed by two bytes giving a location in string space.
The four characters "A", "B", "C" and "D" are stored in ASCII as the byte values
41H, 42H, 43H and 44H, starting at the given location in string space.

Page 112 XYBASIC Programming Manual

Floating point values are stored in four bytes. The first byte is zero and the
remaining bytes meaningless for a floating point zero. Otherwise the first byte
contains the binary exponent of the normalized value, with a bias of 80H. Bytes
2 - 11 contain the binary mantissa of the normalized value, with an assumed
binary point preceding byte 2 and an assumed 1 replacing bit 7 of byte 2. Bit 7
of byte 2 contains the sign of the value, 0 if positive and 1 if negative. For
example, the floating point value 10.5 decimal is equal to 1010.1 binary, which
is normalized as .10101 binary times 2 to the 4th power. Therefore 10.5 decimal
is represented by the four bytes 84H, 28H, OOH, OOH. The first byte contains
the biased exponent (80H + 4H = 84H). Bit 7 of byte 2 is 0, indicating that the
value is positive. Bytes 2, 3 and 4 contain the binary mantissa, with the leading
1 "hidden" by the sign bit.

For an array, the first element is stored in the first location and successive
elements of the array are stored by rows. For example, a floating point array
declared with DIM A(2,3) is stored A(0,0), A(0,1), ..., A(0,3), A(1,0), ..., A(1,3),
A(2,0), ..., A(2,3). Each element is a floating point value, and is therefore stored
in four bytes.

The following routines illustrate the use of GTPAR. They move the values of
XYBASIC variables to and from memory. They could be used to save and load
variable values on a mass storage device such as a digital cassette drive which
communicates with memory. They could also be used to save variables during a
power failure if a portion of the computer’s memory had battery backup.

The routine STOVAR expects two parameters, an integer variable giving the
memory location to be used as the storage destination and the variable to be
saved. Similarly, the routine RCLVAR expects two parameters, an integer
variable giving the memory location used and the variable to be recalled. The
machine language routines are as follows:

0100 = XYBASIC EQU 100H ;START OF XYBASIC
0103 = GTPAR EQU XYBASIC+3 ;GTPAR ENTRY POINT
0168 = ERROR EQU XYBASIC+68H ;ERROR ENTRY POINT
F000 ORG 0FC00H

;STORE VARIABLE
FC00 CD3CFC STOVAR: CALL GETIP ;STORE ADDRESS IN DE
FC03 D5 PUSH D ;SAVE STORE ADDRESS
FC04 CDO301 CALL GTPAR ;POINTERS TO VARIABLE
FC07 D1 POP D ;RESTORE STORE ADDRESS
FC08 B7 ORA A ;PARAMETER PRESENT?
FC09 CA6801 JZ ERROR ;NO - TAKE ERROR EXIT
FC0C FE03 CPI 2 ;STRING VARIABLE?
FC0E C230FC JNZ MOVER ;NO - ALL SET TO MOVE
FC11 46 MOV B,M ;LENGTH OF STRING TO B
FC12 23 INX H ;POINT TO STRING ADDRESS
FC13 7E MOV A,M ;LOW STRING ADDRESS
FC14 23 INX H
FC15 66 MOV H,M ;HIGH STRING ADDRESS

XYBASIC Programming Manual Page 113

F016 6F MOV L,A ;STRING ADDRESS TO HL
FC17 C330FC JMP MOVER ;STORE IT

;RECALL VARIABLE
FC1A CD3CFC RCLVAR: CALL GETIP ;RECALL ADDRESS TO DE
FC1D D5 PUSH D ;SAVE RECALL ADDRESS
FC1E CD0301 CALL GTPAR ;POINTERS TO VARIABLE
FC21 D1 POP D ;RESTORE RECALL ADDRESS
FC22 EB XCHG ;RECALL ADDRESS TO HL,

;VARIABLE ADDRESS TO DE
FC23 FE03 CPI 2 ;STRING VARIABLE?
FC25 C230FC JNZ MOVER ;NO - ALL SET TO MOVE
FC28 EB XCHG ;VARIABLE ADDRESS TO HL
FC29 46 MOV B,M ;STRING LENGTH TO B
FC2A 23 INX H
FCZB 7E MOV A,M ;LOW STRING ADDRESS
FC2C 23 INX H
FC2D 66 MOV H,M ;HIGH STRING ADDRESS
FC2E 6F MOV L,A ;STRING ADDRESS TO HL
FC2F EB XCHG ;RECALL ADDRESS TO HL,

;STRING ADDRESS T0 DE
;MOVE FROM RECALL ADDRESS
;TO STRING AND RETURN

;MOVER MOVES B BYTES FROM THE ADDRESS IN HL TO
;THE ADDRESS IN DE

FC30 78 MOVER: MOV A,B
FC31 B7 ORA A ;IS LENGTH ZERO?
FC32 C8 RZ ;YES - RETURN TO XYBASIC
FC33 7E MOVES: MOV A,M ;FETCH SOURCE BYTE
FC34 12 STAX D ;STORE IT
FC35 23 INX H ;INCREMENT SOURCE POINTER
FC36 13 INX D ;INCREMENT DEST POINTER
FC37 05 DCR B ;DECREMENT BYTE COUNTER
F038 C233FC JNZ MOVES ;KEEP MOVING
FC3B C9 RET ;RETURN TO XYBASIC

;GETIP GETS AN INTEGER PARAMETER T0 DE.
;JUMPS TO ERROR IF PARAMETER IS NOT
;A SIMPLE INTEGER VARIABLE.

FC3C CD0301 GETIP: CALL GTPAR ;GET A PARAMETER
FC3F FE01 CPI 1 ;INTEGER?
FC41 C26801 JNZ ERROR ;NO - TAKE ERROR EXIT
FC44 79 MOV A,C ;EXPECTING SIMPLE VARIABLE
FC45 B7 ORA A ;ARRAY PASSED?
FC46 C26801 JNZ ERROR ;YES - TAKE ERROR EXIT
FC49 5E MOV E,M ;LO BYTE OF VALUE
FC4A 23 INX H ;POINT TO HIGH BYTE
FC4B 56 MOV D,M ;HIGH BYTE
FC4C C9 RET ;RETURN TO CALLER

Page 114 XYBASIC Programming Manual

With these routines resident in memory, it is a simple matter to save the
contents of a string variable in nonvolatile memory (say, at address 0C000H).
The string variable DATE$ could be saved as follows:

NVM% = #C000: CALL #FC00, NVM%, DATE$

It could be recalled at power-up time by:

NVM% = #COOO : DATE$ = " " : CALL #FC1A, NVM%, DATE$

Note that a string of blanks is assigned to DATE$ before the call to RCLVAR.
This is an absolutely necessary formality, because storage space for string
variables is allocated dynamically by XYBASIC. This allows the length of a
string variable’s value to vary dynamically without wasting memory space. If a
string variable contains the null string (as it does if it has not been previously
defined), no storage space has been allocated for it. Thus a string variable must
be assigned a string of length at least as great as the length of the string to be
recalled before the CALL to RCLVAR. This extra step is necessary only for string
variables.

Another example using GTPAR is included in Section 3 of Chapter II, in the
paragraph Saving and Loading Under Operating Systems.

SCALL

The SCALL (Short CALL) command is similar to CALL, except that parameter
values are passed to and from your assembly language routine directly (through
registers) rather than with GTPAR. This makes linking to an assembly language
routine faster and easier. However, the parameters which are passed must be
integers; you must use CALL rather than SCALL to pass floating point or string
values. You also may not pass more than three integer values with SCALL. If
you say (in Extended XYBASIC):

SCALL #8000, I%, J%, K%

then XYBASIC will first load registers BC, DE and HL with the values of I%, J%
and K%, and then execute an assembly language CALL to the routine at
location 8000H. Executing an assembly language RETurn will return control to
the next command after the SCALL, and the values in registers BC, DE and HL
will be assigned to the variables I%, J% and K%.

As with CALL, the location of the machine language routine may be specified by
any formula. However, the parameters of SCALL must be integer variables. The
parameters are optional, but a MC (Machine language Call) error will occur if
you try to pass more than three parameters, or if you use a non-integer variable
as a parameter.

XYBASIC Programming Manual Page 115

Note that the SCALLed routine must preserve the values in BC, DE and HL if
you wish to leave the parameter values unchanged! If you need to use an
assembly language routine which does not preserve registers, you can assign
the parameters to temporary variables first. In the above example you could for
example say:

LET ITEMP% = I%
LET JTEMP% = J%
LET KTEMP% = K%
SCALL #8000, ITEMP%, JTEMP%, KTEMP%

where ITEMP%, JTEMP% and KTEMP% are integer variables not used
elsewhere in your XYBASIC program. The values of these temporaries may be
altered by SCALL, but the values of I%, J% and K% and will remain unchanged.

Of course the above examples should be written without the % signs in Integer
XYBASIC, since only integer variables are allowed.

Example:
Archie Goodwin must write a program to control a high speed stepper motor
and print positional information after its rotation is complete. The motor moves
one step for each output to port 0, regardless of the value output, and accepts a
new step pulse every millisecond. Archie could issue pulses to the motor with
an OUT command inside a FOR/NEXT loop. However, his stepper is capable of
a much higher step rate; XYBASIC is a high level interpretive language and
cannot compete with machine language for speed. But the data manipulation
required by the program is very difficult for Archie to perform in machine
language.

Archie’s solution is to code only the time critical section for motor control in
machine language and write the rest of his task in XYBASIC. The following
simple machine language routine provides the needed speed.

FC00 ORG 0FC00H
FC00 78 STEPN: MOV A,B ;NUMBER OF STEPS IS IN BC
FC01 B1 ORA C ;ZERO STEPS LEFT?
FC02 C8 RZ ;YES - RETURN TO XYBASIC
FC03 D300 OUT STEP ;NO - SEND STEP PULSE
FC05 3E83 MVI A,83H ;TIMING CONSTANT FOR 1MS
F007 3D DELAY: DCR A ;DONE WITH DELAY?
FC08 C207FC JNZ DELAY ;NO - KEEP LOOPING
FCOB 0B DCX B ;DECREMENT STEP COUNTER
FCOC CBOOFC JMP STEPN ;AND SEE IF DONE STEPPING

With this routine in memory, the stepper can be turned at any time by setting
the variable I% to the desired number of steps and executing the command :

Page 116 XYBASIC Programming Manual

SCALL #FC00,I%

After execution of the machine language routine the value of the variable I% will
always be zero. The machine language routine decrements the BC register pair
to zero to determine when enough step pulses have been sent. When the
subroutine returns, XYBASIC assigns the new value in the BC register pair to
the variable I%, making it zero.

XYBASIC Programming Manual Page 117

Section 12: ROMSQuared Features

Conventional BASIC interpreters must reside in RAM, and allow only one user
program to be in memory at any time, also in RAM. The Custom I/O version of
the XYBASIC interpreter, on the other hand, may reside in either RAM or ROM.

Unlike other BASIC interpreters, XYBASIC allows several user programs to be in
memory simultaneously, in either RAM or ROM, and lets you use a simple
XYBASIC command to switch between them. The unique features which make
this possible allow both the interpreter and the user program to reside in ROM,
and therefore are called ROMSQuared features.

You can use the ROMSQuared features described in this section to execute an
application program as soon as you turn on your computer. This allows you to
build convenient stand-alone systems with ease. You can debug a program in
RAM and then burn it and execute it out of PROM.

Working Space

CP/M and ISIS-II versions of XYBASIC reside in one contiguous segment of
RAM. Custom I/O versions reside in one area of memory, either RAM or ROM,
and use a separate area of RAM. In any version, the contiguous segment of
memory from the first RAM location used by XYBASIC to the location specified
in response to the END OF MEMORY prompt during initialization must be RAM,
and is used as working space by the interpreter. Any segment of memory not
used by XYBASIC may be used to store machine language routines or XYBASIC
user programs.

The working space always contains a XYBASIC program (initially, an empty
program), and the commands you give normally refer to that program. The
commands described in this section allow you to copy programs to and from
working space, and to execute programs residing elsewhere in memory, either in
RAM or ROM.

MOVE

The command MOVE allows XYBASIC programs to be moved to or from the
working space. For example,

MOVE TO #8000

copies the current program from working space to memory (RAM) starting at
location 8000H. Thus MOVE TO creates a new image of the current program,
which might then be burned into PROM.

Page 118 XYBASIC Programming Manual

The internal representation of a XYBASIC program is completely relocatable
(position independent); it may be executed from any address. Therefore a PROM
programmed with a XYBASIC program may be plugged into any available
socket.

XYBASIC checks that the address given in the MOVE TO command does not
overlap the interpreter or working space, and that there is sufficient RAM at the
specified address to store the program; if not it issues an RO (ROmsq feature)
error. The program in the working space is unchanged by he MOVE operation.

Similarly, the command

MOVE FROM #8000

copies a XYBASIC program from memory (RAM or ROM) to working space. An
RO error occurs if the specified location is within the interpreter or working
space, or if it is not the start of a XYBASIC program. An OM error occurs if the
working space is too small to contain the program. (In the latter case, CLEAR
might provide the extra space required for the program.) A successful MOVE
FROM will of course destroy the previous program in the working space.

You can use MOVE FROM to fetch a XYBASIC program from ROM into the RAM
working space, modify the program, and then burn a new PROM containing the
modified program. The MOVE command thus makes it easy to manipulate
XYBASIC programs on ROM based systems.

EXEC

The EXEC command lets XYBASIC access programs outside the working space.
If you wish to RUN the program at location 8000H, you type

EXEC #8000

If the specified address is not the start of a XYBASIC program, or is within the
interpreter or working space, an RO error occurs. Otherwise all subsequent
XYBASIC commands will refer to the specified program rather than to the
program in working space. You just type LIST to list it, RUN to execute it,
<control-C> to interrupt it, and so on. If you type

EXEC

(without an address specified), the program stored in working space becomes
the current program again.

The location you specify in the EXEC command may be either RAM or ROM.
Therefore you can use EXEC to access programs stored in PROMs, which are
available immediately (without LOADing) when you turn on your computer.

XYBASIC Programming Manual Page 119

EXEC has no effect on either the program in working space or the program at
the specified address. Rather, it simply tells XYBASIC to which program
subsequent commands will refer. Notice that the MOVE command does not
change which program is addressed; you must perform an EXEC after a MOVE
if you wish to address the MOVEd copy of the program.

Only the program in working space may be edited. If you attempt to add, delete
or alter a line after using EXEC to refer to a different program, an RO error will
occur. Of course the editing may be performed by MOVEing the program FROM
its location to working space, editing it, and finally MOVEing it back TO its
location. Similarly, the NEW and LOAD commands apply only to the program in
working space; an RO error occurs if you type NEW or LOAD while referring to a
program specified with EXEC. The SAVE command will always SAVE the
current program, whether in working space or elsewhere.

Another form of the EXEC command allows execution of chains of XYBASIC
programs without user intervention. For example, in the command

EXEC #A000, G

the address #A000 specifies the location of a XYBASIC program, as usual. The
suffix ,G indicates that XYBASIC should execute the specified program
immediately (by doing a GOTO to its first line), rather than returning to direct
mode after performing the EXEC command. The EXEC <location>, G command
does not clear variables. However, it does destroy any GOSUB/RETURN and
FOR/NEXT context, making it illegal to have a FOR statement in one program
and the matching NEXT in another. Of course, a CLEAR command can be
included as the first line of the specified program; in this case the command
acts like an EXEC immediately followed by a RUN.

The command

EXEC ,G

with the address omitted but the suffix remaining, tells XYBASIC to execute the
program currently in its RAM workspace.

You can use EXEC <location>, G to build complex systems containing several
independent programs. A master control program can type a list of available
programs (called a menu), and allow the user to choose which program he
wishes by typing a character. Then by executing an appropriate EXEC
command depending on the character, the master can transfer control directly
to the chosen program.

One additional type of RO error may occur in conjunction with EXEC. If the
location specified in the EXEC command is ROM (EXEC is especially useful for
executing programs stored on PROMs), line breakpoints may not be used. When
a line BREAK or UNBREAK command is executed in this situation, an RO error
occurs and the command is ignored.

Page 120 XYBASIC Programming Manual

FIRST and LAST

You may sometimes want to know the location of a XYBASIC program, for
example to burn it into PROM. Therefore the functions FIRST and LAST return
the locations of the first and last bytes of the current program. The command

PRINT FIRST, LAST, LAST-FIRST+1

prints the location and length of the current program, whether in working space
or not.

Suppose that you have a ROM based XYBASIC system, including a PROM
burning routine at location 0A000H. Assume also that the PROM burning
routine operates by burning the bytes starting at RAM location 0C000H, and
that registers BC tell the routine how many bytes are to be burned. If the
routine is successful, it returns 0 in BC; if unsuccessful, BC returns the first
location at which the burned PROM disagrees with the desired value. Then you
can burn a XYBASIC program into PROM by executing the following subroutine,
which uses the SCALL command explained in Section 11 above.

1000 I% = LAST - FIRST + 1 ’LENGTH OF CURRENT PROGRAM
1010 MOVE TO #C000 ’MOVE TO BURNING LOCATION
1020 SCALL #A000, I% ’EXECUTE BURNING ROUTINE
1030 IF I% <>0 THEN PRINT "FAILURE AT LOCATION"; I%
1040 RETURN

Default Initialization Options

Another unique ROMSQuared feature of XYBASIC is its ability to accept
specified values for terminal WIDTH and END OF MEMORY and to execute a
program from a specified address in memory (in ROM, for example) without
prompting during initialization. This feature allows you to execute a XYBASIC
program from ROM without any initialization, i.e. to "load and go" automatically
on startup.

Just below its base, XYBASIC contains the following five bytes:

ORG RSQORG
DB 0 ;default WIDTH @ RSQORG
DW 1 ;default END OF MEMORY @ RSQORG+1
DW 0 ;default program address @ RSQORG+3

The value of RSQORG depends on which version of XYBASIC you use, as
described in Chapter II. Normally its value is 106H for CP/M versions, 3286H
for ISIS-II versions, and 163H for Custom I/O versions.

XYBASIC Programming Manual Page 121

If the byte at RSQORG contains zero, XYBASIC will prompt for WIDTH in the
usual way. If not, the specified value is taken as the WIDTH.

XYBASIC takes the word at RSQORG+1 as the value for the top of its RAM
working space if the value specified is acceptable. If the value is nonzero but
does not leave XYBASIC sufficient RAM, XYBASIC prompts for END OF
MEMORY? during initialization in the usual way. If the value is zero, XYBASIC
searches for the end of RAM at runtime (as when <carriage return> is typed in
response to the initialization prompt).

Finally, if the word at RSQORG+3 is nonzero, XYBASIC assumes it to be the
address of a XYBASIC program and attempts to RUN the program at that
location. Specifying a value in this word has the same effect as using EXEC to
refer to the desired program and then typing RUN; and as with EXEC a RO
error will occur if no program is found at the desired location. hr();# XYBASIC
Programming Manual

Section 13: Errors

Even experienced programmers make mistakes or ask XYBASIC to do
something it cannot; for example, the result of a multiplication might be too
large. When XYBASIC finds an error in your program, it prints an error message
giving the type and location of the error. Suppose your program contains the
line

10 LET 3 = J

Since the left hand side of a LET command must be a variable, XYBASIC gives
you an error message:

SN ERROR: 10 LET
3 = J

OK

Here SN is a code indicating a SyNtax error; the two-letter codes for other errors
are given below. The line in which the error occurs is then printed, with a
linefeed indicating the approximate location of the error. Using this information
you can correct the error and try running the program again.

TRAP and UNTRAP

Sometimes you want your program to continue even after XYBASIC detects an
error. For example, you might be running an important experiment and want
your program to avoid stopping. This is done by using UNTRAP mode, in which
XYBASIC attempts to continue execution after reporting errors to the console.
Certain errors are always fatal, i.e. there is no way to recover from them, but for

Page 122 XYBASIC Programming Manual

other errors XYBASIC applies a particular recovery procedure and continues. To
get into UNTRAP mode you just type UNTRAP, and to get out you type TRAP.
XYBASIC is initially in TRAP mode, and returns to TRAP mode whenever a NEW
is executed.

Try the following example.

NEW
20 FOR I=1 TO 3
30 MUMBLE
40 NEXT I
RUN

SN ERROR: 30 MUMBLE

OK

Note that XYBASIC returns to direct mode when it finds the syntax error. Now
say

10 UNTRAP
RUN

SN ERROR: 30 MUMBLE

SN ERROR: 30 MUMBLE

SN ERROR: 30 MUMBLE

OK

Notice that the bad line is ignored and execution continues in UNTRAP mode.

Error Types

The following list explains the code for each type of error and the recovery
procedure XYBASIC uses in UNTRAP mode. Square brackets ([]) indicate that
the error occurs only in the bracketed version of XYBASIC.

BF Bad File number [CP/M Disk]: File number in OPEN not between 1 and
255, or no file OPEN with given file number.
Recovery: none.

BS Bad Subscript: subscript negative or greater than dimension of array, or
subscript formula too complex.
Recovery: if negative, uses smallest legal subscript (0). If too large, uses
largest legal subscript.

XYBASIC Programming Manual Page 123

BY BYte: value negative or greater than 255 where 8-bit quantity is required.
Recovery: most significant byte is ignored.

CN CoNtinue: XYBASIC cannot continue, usually because program has been
changed since execution was interrupted.
Recovery: none.

CS CheckSum [Custom I/O]: unsuccessful attempt to LOAD.
Recovery: none.

DD Doubly Defined: array DIMensioned or function DEFined more than once.
Recovery: none.

DF Disk Full [CP/M Disk]: No space remaining on disk.
Recovery: none.

DK DisK [CP/M, ISIS-II]: unsuccessful disk operation.
Recovery: none.

EF End of File [CP/M Disk]: attempt to read past end of file.
Recovery: none.

EN ENable: too many interrupts ENABLEd or a nonexistant line DISABLEd.
Recovery: command ignored.

EX EXception [Editing]: attempt to edit a line longer than 72 characters.
Recovery: none.

FC Function Call: argument not in domain of function, function DEFined in
terms of itself, or illegal argument to function.
Recovery: argument truncated to domain.

FI File Input [CP/M Disk]: bad INPUT item.
Recovery: none.

FM File Mode [CP/M Disk]: attempt to read from a file OPEN for Update, or
attempt to write to a file OPEN for Output.
Recovery: none.

FN File Not found [CP/M Disk]: attempt to OPEN a nonexistant file for Input
or Update.
Recovery: none.

FO File Open [CP/M Disk]: attempt to OPEN file with already OPENed
filename or file number.
Recovery: none.

Page 124 XYBASIC Programming Manual

FR FoR: FOR without corresponding NEXT.
Recovery: none.

ID Illegal Direct: command not legal in direct mode.
Recovery: none.

II Illegal Indirect: command legal only in direct mode.
Recovery: none.

LS Long String [Extended] : Result of concatenation longer than 255
characters.
Recovery: result truncated to 255 characters.

MC Machine Call: too many parameters to machine language SCALL.
Recovery: excess parameters ignored.

NF Next without For: NEXT executed without corresponding FOR or incorrect
variable name specified.
Recovery: NEXT is ignored.

OD Out of Data: READ executed after all DATA items used.
Recovery: XYBASIC does a RESTORE.

OM Out of Memory: Too many variables, program too long, GOSUBs or FORs
nested too deeply, or formula too complex.
Recovery: Purges GOSUB and FOR information, if possible.

ON ON: argument of ON is negative, zero or greater than number of specified
line numbers.
Recovery: If negative or zero, takes first line number in list. If too large,
takes last line number in list.

OP OPen [CP/M Disk]: attempt to OPEN too many files simultaneously.
Recovery: none.

OS Out of String space [Extended]: Insufficient string space remains.
Recovery: none.

OV OVerflow: [Integer] Result of operation less than -32768 or greater than
32767. [Extended] Result of operation is of magnitude greater than 1.7 *
10^38, or attempt to use value of magnitude greater that 32767 where
integer quantity is required.
Recovery: result replaced with largest possible value.)

RG Return without Gosub: RETURN executed without corresponding GOSUB.
Recovery: none.

XYBASIC Programming Manual Page 125

RO ROmsq feature: insufficient RAM to store program, illegal MOVE
destination, EXEC location not a program. [Editing]: attempt to edit
program outside working space.
Recovery: none.

SN SyNtax: command not in required form.
Recovery: command ignored.

ST STring [Extended] : String expression too complex.
Recovery: none.

TM Type Mismatch [Extended] : Attempt to assign string value to numeric
variable, or numeric value to string variable.
Recovery: none.

UF Unimplemented Feature [Compiler, Runtime Module]: command not
implemented in XYBASIC Compiler or Runtime Module.
Recovery: command ignored.

US Undefined Statement: specified line number nonexistant.
Recovery: none.

Page 126 XYBASIC Programming Manual

Section 14: Editing Commands

XYBASIC is available with a line oriented editor, allowing you to modify
XYBASIC programs without retyping entire lines. The additional editing facilities
consist of the commands AUTO, DELETE, EDIT, and RENUM. Your copy of
XYBASIC includes the editing commands described here only if the word EDIT
appears in the initialization dialog version message.

AUTO

The AUTO command allows you to enter successive new lines of a program
without typing line numbers. AUTO takes two optional arguments, a starting
line number and an increment. For example, the command

AUTO 100, 20

tells XYBASIC to accept a sequence of lines starting at line 100 with an
increment of 20. XYBASIC responds by prompting

100

followed by a space, and then waits for you to enter a line. If you just type
<carriage return>, XYBASIC returns to direct mode, gives the usual OK prompt
and waits for another command. If you type a line, XYBASIC adds it to the
current program as line 100 and then types

120

followed by a space, and waits for you to enter another line. You may exit from
AUTO mode by typing <control-C> at any time, as well as by typing <carriage
return> at the start of a line.

If AUTO encounters a line number which is already in the current program, it
prompts with an asterisk instead of a space after the line number:

100*

If a <carriage return> is typed, the old line 100 is retained and XYBASIC
returns to direct mode. If a new line is entered, the old line 100 is replaced by
the typed line.

If the second argument of AUTO is not specified, it is assumed to be 10. If
neither argument is specified, both arguments are assumed to be 10. Thus the
commands

XYBASIC Programming Manual Page 127

AUTO
AUTO 10
AUTO 10, 10

are all equivalent.

AUTO is legal only in direct mode. An II (Illegal Indirect) error will occur if
XYBASIC attempts to execute an AUTO command in program mode. An SN
(SyNtax) error occurs if a line number is included at the beginning of any line
typed in AUTO mode. The AUTO command is legal only if XYBASIC is currently
addressing its working space; an RO (ROmsq feature) error will occur if an
AUTO command is attempted while XYBASIC is addressing a program outside
its working space.

DELETE

The DELETE command deletes sections of a XYBASIC program. It takes two
arguments, a starting and an ending line number. For example, the command

DELETE 110, 150

tells XYBASIC to delete all lines of the current program from line 110 to line
150, inclusive. If the second line number is omitted, XYBASIC deletes only the
specified line:

DELETE 130

tells XYBASIC to delete only line 130. This has the same effect as typing

130<carriage return>

except that DELETE 130 will give a US (Undefined Statement) error if line
number 130 is not found in the current program.

If the specified line numbers are not found, DELETE will delete all lines
following the first line number and preceding the second.

DELETE is legal only in direct mode. An II (Illegal Indirect) error will occur if
XYBASIC attempts to execute a DELETE command in program mode. The
DELETE command is legal only if XYBASIC is currently addressing its working
space; an RO (ROmsq feature) error will occur if a DELETE command is
attempted while XYBASIC is addressing a program outside its working space.

Page 128 XYBASIC Programming Manual

EDIT

The EDIT command allows a line of the current program to be changed without
retyping the entire line. It takes a single argument giving the line number of the
line which you wish to edit. For example,

EDIT 120

tells XYBASIC to edit line 120. XYBASIC responds by printing line 120, followed
by a <carriage return> and <linefeed>. XYBASIC then waits for you to type
editing commands to change the contents of line 120. The editing commands
usually consist of a <control character> or a <control character> followed by a
<printable character>, as detailed below. An imaginary cursor is initially located
to the left of the line being edited, and moves when editing commands are
performed. The <control character>s typed as editing commands are not echoed,
so characters to the left of the cursor may be read by examining the current
line.

If the line number is omitted from the EDIT command, XYBASIC will edit the
line most recently added to the program or the line in which the most recent
error occurred. Thus errors may be corrected by simply typing

EDIT

and then editing the bad command line.

The editing facilities of XYBASIC are available without typing the EDIT
command through the use of <control-E>, as explained below. This form of line
editing is particularly useful for correcting errors in typing INPUT data and
direct mode commands.

A US (Undefined Statement) error will occur if the line number given in the
EDIT command is not found in the current program. EDIT is legal only in direct
mode; an II (Illegal Indirect) error will occur if XYBASIC attempts to execute an
EDIT command in program mode. An EX (EXception) error will occur if a line
containing more than 80 characters is EDITed; this can occur through the use
of the abbreviation "?" for PRINT, for example. The EDIT command is legal only
if XYBASIC is currently addressing its working space; an RO (ROmsq feature)
error will occur if an EDIT command is attempted while XYBASIC is addressing
a program outside its working space.

The available editing commands are:

<carriage return>
Terminates the editing process. The characters to the right of the cursor are
typed, the line is added to the current program, and XYBASIC returns to direct
mode with the usual OK prompt.

XYBASIC Programming Manual Page 129

<printable character>
Any <printable character> typed is echoed and inserted in the line being edited
at the current position of the cursor, with the cursor positioned to the right of
the inserted character. If the line will hold no more characters, a <control-G>
(bell or beep) is echoed instead of the character.

<rubout>
Deletes the character to the left of the cursor, echoing the deleted character
within slashes (/ and \).

<control-B>
[Boot] As always, <control-B> exits from XYBASIC and returns to the operating
system or monitor.

<control-C>
Exits from editing mode and returns to direct mode, leaving the previous
contents of the line being edited unchanged.

<control-D>
[Delete] Deletes the character to the immediate right of the cursor. The deleted
character is not echoed.

<control-E>
[Edit] Allows the use of editing facilities any time you enter a line to XYBASIC. If
<control-E> is typed as the first character of a line, XYBASIC enters the editor
with the contents of the most recently typed line; this facility is particularly
useful for correcting errors in direct mode commands and INPUT data. If
<control-E> is typed after the first character, XYBASIC enters the editor with
the characters preceding the <control-E>.

<control-F> <printable character>
[Find] Moves the cursor to the right of the next occurrence of the specified
<printable character> in the line being edited, printing all characters which the
cursor passes. If the remainder of the line contains no occurrence of the
<printable character>, XYBASIC echoes <control-G> (bell or beep) and leaves
the cursor position unchanged. The search character is not echoed.

<control-G>
[Bell] Inserts a <control-G> (bell or beep) in the line at the current cursor
position. As elsewhere in XYBASIC, <control-G> is treated as a <printable
character>.

<control-H>
[Backspace] Erases the character to the left of the cursor and echoes <control-
H>. For terminals which recognize <control-H> as a backspace, such as most
CRTs, characters should be deleted with <control-H> rather than <rubout>.

Page 130 XYBASIC Programming Manual

<control-K>
[Kill] Kills all characters to the right of the cursor.

<control-L>
[Left] Types the characters remaining to the right of the cursor on the line being
edited, followed by <carriage return> and <linefeed>, and leaves the cursor to
the left of all characters on the line.

<contro1-N>
[Next] Finds the next occurrence of the <printable character> last specified in a
<control-F> search command, as described above. Echoes <control-G> and
leaves the cursor position unchanged if no <control-F> command has been
given or if the line contains no more occurrences of the <printable character>.

<control-R>
[Retype] Types the characters to the right of the cursor on the line being edited,
followed by <carriage return> and <linefeed>, and then retypes the characters to
the left of the cursor. The cursor position is unchanged.

<control-T>
Type] Moves the cursor position one character to the right, echoing the
character passed by the cursor.

<control-U>
[Undo] Discards the current contents of the line being edited and begins the
editing process anew with the original contents of the line, allowing easy
recovery from editing mistakes.

RENUM

The RENUM command automatically renumbers the current XYBASIC program.
It takes up to three arguments. The first argument gives the current line
number of the first line to be renumbered. The second argument gives the
desired increment. The third argument gives the desired line number for the
first renumbered line. For example,

RENUM 10, 100, 1000

tells XYBASIC to renumber the current program starting at line 10, with line 10
renumbered as line 1000 and successive lines numbered 1100, 1200, and so
on. If all three arguments are omitted, XYBASIC renumbers by leaving the line
number of the first program line unchanged and incrementing successive line
numbers by 10. If the second and third arguments are omitted, XYBASIC leaves
the line number of the given line unchanged and increments successive line
numbers by 10. If the third argument is omitted, it is assumed to be the same
as the first. For example,

XYBASIC Programming Manual Page 131

RENUM ’SAME AS RENUM first, 10, first
RENUM 20 ’SAME AS RENUM 20, 10, 20
RENUM 100, 20 ’SAME AS RENUM 100, 20, 100

A US (Undefined Statement) error will occur if the specified first line number
does not exist in the current program. A US error also will occur if renumbering
the program with the specified arguments would result in a line number greater
that 65535, or if the specified renumbering would change the order of lines in
the program. In any of these cases no renumbering takes place.

A US (Undefined Statement) error will occur if any command in the current
XYBASIC program refers to a nonexistent line number. For example, attempting
to RENUM 10, 20, 100 with the current program

10 GOTO 5

would give a US error, since the program contains no line number 5. In this
case the line renumbering does occur, but references to nonexistent lines
remain unchanged and XYBASIC lists the lines containing nonexistent line
number references before issuing the US error:

100 GOTO 5
US ERROR: RENUM 10, 20, 100

RENUM is legal only in direct mode. An II (Illegal Indirect) error will occur if
XYBASIC attempts to execute a RENUM command in program mode. The
RENUM command is legal only if XYBASIC is currently addressing its working
space; an RO (ROmsq feature) error will occur if a RENUM command is
attempted while XYBASIC is addressing a program outside its working space.

Page 132 XYBASIC Programming Manual

Section 15: CP/M Sequential Disk Commands

The CP/M version of Extended XYBASIC is available with sequential disk
operations, allowing you to store and manipulate information on disk files
under XYBASIC. This section describes the facilities available in this version.
Your copy of XYBASIC includes the commands described in this section only if
the word DISK appears in the initialization dialog version message.

The additional features available in this version are the commands OPEN,
CLOSE, LINPUT, MARGIN, DIR, and SCRATCH, and the function EOF. Also,
additional forms of the commands PRINT, INPUT and CLEAR are allowed. The
operation of all other XYBASIC commands and functions in this version is
unchanged, with the exception of different error messages when disk errors
occur.

Filenames

The name of a CP/M file in CP/M Sequential Disk XYBASIC consists of an
optional disk name, a filename, and an optional filetype. It may be specified by
any string, either a quoted string or a string formula. The filename must be a
string of one to eight letters or digits. The diskname may be "A:", "B:", "C:", "D:"
or "@:" (indicating the currently logged disk). The filetype consists of "." followed
by from zero to three letters or digits. Lower case alphabetic characters in the
filename and filetype are converted to upper case automatically.

The following are examples of legal file names.

"EXAMPLE"
"SMITH.DAT"
"a:temp.fil" (lower case converted to UPPER)
S$ (where S$ has the value "@:PROG.XYB")
S$+".bas" (where S$ has the value "b:prog2")

The SAVE and LOAD commands described in Section 6 use filenames of the
same format, but the filetype .XYB or .BAS is assumed automatically. Therefore
to SAVE a program in ASCII as B:EXAMPLE.BAS, you just type

SAVE "B:EXAMPLE",A

Notice that the disk name B: is inside the quote marks rather than outside. A
SN (SyNtax) error will occur if a file name is specified incorrectly in a command.

XYBASIC Programming Manual Page 133

OPEN

The OPEN commmand tells XYBASIC the name of a file you wish to use and
whether you want to read from the file or write to it. It also associates an integer
file number (between 1 and 255) with the file for use in subsequent commands.
For example,

OPEN I, @1, "OLD.DAT"

indicates that you want to read (Input) information from the file "OLD.DAT",
referring to it as file number @1. Similarly,

OPEN O, @2, "NEW.DAT"

indicates that you want to write (Output) information to the file "NEW.DAT",
referring to it as file number @2. Finally,

OPEN U, @3, "UPDATE.DAT"

indicates that you want to Update the file "UPDATE.DAT" by appending
additional information to its previous contents.

The file number in an OPEN command may be given by any integer formula,
but a BF (Bad File number) error will occur if its value is not between 1 and
255. An FN (File Not found) error will occur if you try to OPEN a nonexistant file
for Input or Update. An FO (File Open) error will occur if the filename or
number is already associated with an OPEN file.

The number of files you can have OPEN simulaneously is limited to two when
you first load XYBASIC, and an OP (OPen) error occurs if you try to OPEN too
many files. You can use the CLEAR command as described below to indicate
that you need more or less than two OPEN files simultaneously.

CLOSE

The CLOSE command tells XYBASIC that your operations with a given disk file
or files are completed. If you say

CLOSE @1

then file @1 is closed; a BF (Bad File number) error occurs if no OPEN file
exists. Similarly,

CLOSE

Page 134 XYBASIC Programming Manual

will close all OPEN files. XYBASIC performs a CLOSE automatically whenever it
executes a RUN, END or NEW command. You must CLOSE files before you exit
from XYBASIC, or the information in them may be lost! The simplest way to do
so is to always write an END command at the end of disk XYBASIC programs.

PRINT

The PRINT command lets you send information to files open for Output or
Update in CP/M Sequential Disk XYBASIC. If you type the command

PRINT @1, I

then XYBASIC will append the characters giving the value of I and a <carriage
return> and <linefeed> to the file @1. Similarly,

PRINT @1, "J = "; J;

will add "J = " and the value of J to @1. Since this command ends in a
<semicolon>, no <carriage return> and <linefeed> are sent to @1.

The file number may be given by any integer formula. A BF (Bad File number)
error will occur if the value of the formula is not 0 or the number of an OPEN
disk file. If the value is 0, the desired information is just PRINTed on the
console, so the command

PRINT @0, A; B; C

has the same effect as

PRINT A; B; C

A DF (Disk Full) error will occur if the disk is full. You can use the SCRATCH
command described below to delete unwanted files after a DP error occurs,
leaving additional space for data.

An FM (File Mode) error will occur if you try to PRINT to a file OPEN for Input.

MARGIN

The MARGIN command lets you format your output files by specifying a
maximum width for each output line. For example, if you say

MARGIN @1, 50

then all lines PRINTed to file @1 will have a maximum width of 50 characters.
The width may be specified by any integer formula with a value less than 256. If
you do not set the file width with MARGIN, XYBASIC assumes a default width of

XYBASIC Programming Manual Page 135

72 characters.

You can also use MARGIN to change the width of output lines on the console
device. For example,

MARGIN @0, 50

changes the width of the console from the value specified during initialization to
50 characters.

A BF (Bad File number) error occurs if the file number specified is not 0 or the
number of an OPEN file, and a BY (BYte) error occurs if the specified width is
greater than 255.

INPUT

In CP/M Sequential Disk XYBASIC you can use INPUT to read information from
disk files as well as to get information from the console. For example,

10 INPUT @2, I, J, K

gets new values for the variables I, J and K from the file @2. When XYBASIC
excutes an INPUT from a file, it does not prompt and does not give REDO or
EXCESS IGNORED messages.

The file number may be given by any integer formula. A BF (Bad File number)
error will occur if its value is not 0 or the number of a file OPEN for Input. If the
file number is 0, XYBASIC just does a normal INPUT, prompting with ? and
waiting for information from the console.

An FM (File Mode) error will occur if you try to INPUT from a file OPEN for
Output or Update, and an FI (File Input) error will occur if a bad item is read
during INPUT. INPUT is legal only in program mode, and an ID (Illegal Direct)
error occurs if you try to use it in direct mode.

A EF (End of File) error will occur if you use INPUT to read past the end of a file.
You can avoid such errors by using the EOF function described below to check
if all the information in the file has been read.

LINPUT

The LINPUT (Line INPUT) command reads a line of characters from the console
or from a disk file and assigns a string variable the value given by the string of
characters in the line. To use LINPUT to get a line from the console, you just say

Page 136 XYBASIC Programming Manual

10 LINPUT S$

When XYBASIC executes line 10, it just waits for you to type a line at the
console; unlike INPUT, LINPUT does NOT print a ? to prompt you before waiting
for the typed line. When you terminate the line you type with a <carriage
return>, XYBASIC constructs a string consisting of the characters typed (not
including the <carriage return>), and this string becomes the new value of S$.

You can also get lines from disk files with LINPUT. The command

10 LINPUT @2, S$

will get characters from the file @2 until either a <carriage return> is found or
255 characters have been read without encountering a <carriage return>. Then
the string consisting of the characters read (not including the <carriage return>)
becomes the new value of S$. A BF (Bad File number) error will occur if the
specified file number is not 0 or the number of a file OPEN for Input. If the file
number is 0, XYBASIC just does a LINPUT from the console.

A EF (End of File) error will occur if you use LINPUT to read past the end of a
file. You can avoid such errors by always writing a <carriage return> and
<linefeed> at the end of a file (for example with the command PRINT @2) and
then using the EOF function described below to check if all the information in
the file has been read.

An FM (File Mode) error will occur if you try to LINPUT from a file OPEN for
Output or Update. Like INPUT, LINPUT is legal only in program mode, and an
ID (Illegal Direct) error will occur if you try to use it in direct mode.

EOF

EOF is a function which tells you whether a file OPEN for Input contains any
more characters. Its value is true (-1) if there are no more characters, and false
(0) if there are more. You can use EOF to avoid EF (End of File) errors which
would otherwise occur when a program tried to INPUT or LINPUT information
past the end of a file.

For example, consider the following program to read in a file and list it on the
console.

10 INPUT "Filename" FILE$
20 PRINT "Listing of file "; FILE$
30 PRINT
40 OPEN I, @1, FILE$
50 LINPUT @1, S$
60 PRINT S$
70 GOTO 50

XYBASIC Programming Manual Page 137

When you RUN this program, it prompts for a filename and then prints each
line of the program on the console. After it reads the last line, it tries to LINPUT
another line and an EF error occurs. To avoid the error you can replace line 70
with

70 IF NOT EOF (1) THEN 50
80 END

Line 70 uses EOF to test whether more lines exist in the file before returning to
line 50 to LINPUT the next line.

A BF (Bad File number) error occurs if the argument of EOF is not the number
of an OPEN file. An FM (File Mode) error occurs if the argument is the number
of a file OPEN for Output or Update.

DIR

The DIR command lets you print file directories on the console. If you say

DIR

then XYBASIC will print the name of all files on the currently logged disk.
Similarly,

DIR "B:*.XYB"

will print the names of all files on disk B: with filetype .XYB (XYBASIC programs
in internal format).

SCRATCH

The SCRATCH command lets you erase files from a disk. For example,

SCRATCH "TEMP.DAT"

will delete the file TEMP.DAT from the currently logged disk.

CLEAR

As noted above, CP/M Sequential Disk XYBASIC initially assumes that you will
need at most two files OPEN simultaneously. If you need more (or less), you can
use a modified form of the CLEAR command to tell XYBASIC how many you
need. If you say

Page 138 XYBASIC Programming Manual

CLEAR @3

then XYBASIC will allow you to have up to three files OPEN simultaneously.
Each potentially open file requires 166 bytes of RAM, so an OM (Out of Memory)
error may occur if the number of files you try to allocate is too large. The
amount of string space allocated is left unchanged by this form of CLEAR, but
the values of your variables are all CLEARed.

XYBASIC Programming Manual Page 139

Chapter II: VERSION DIFFERENCES

The XYBASIC interpreter is available in a number of different versions,
depending on the user’s computer and operating system. This chapter outlines
specific differences between versions. It also describes two related programs, the
XYBASIC Compiler and XYBASIC Runtime Module, which allow debugged
programs to be executed with less overhead than under the interpreter.

Section 1: CP/M Version

The CP/M version of XYBASIC is supplied as a COM file XYBASIC.COM residing
in RAM starting at 100H, so to load XYBASIC under CP/M you just type
XYBASIC. CP/M copies of XYBASIC are normally delivered on a single density
eight inch floppy disk, but are also available on a single density five inch floppy
disk (e.g. for NorthStar).

In CP/M versions the IOBYTE resides at location 3, and the default value for the
top of available RAM is determined from locations 6 and 7. Location 103H
contains JMP GTPAR, and after initialization the JMP instruction at location
100H may be used to return to direct mode from user routines (e.g. after an
error condition in an assembly language routine). The ROMSQuared default
value bytes are at locations 106H to 10AH.

By including a filename on the CP/M command line, you can load XYBASIC
together with a XYBASIC program and execute the program immediately. For
example,

XYBASIC B:EXAMPLE

first loads XYBASIC. Then the WIDTH is defaulted to 80 and the END OF
MEMORY is defaulted to the maximum value allowed under your CP/M system,
exactly as if you typed <carriage return> in response to the initialization
prompts. Finally the specified XYBASIC program (in this case B:EXAMPLE.XYB)
is LOADed and RUN. An FN (File Not found) error will occur if no .XYB file with
the given filename is found.

The load and go option can be especially useful within SUBMIT files, where any
number of programs can be executed (with non-XYBASIC programs
interspersed) in sequence. You can use the command

CALL 0

within XYBASIC programs to exit from the program and return to CP/M
automatically, without typing <control-B>.

Page 140 XYBASIC Programming Manual

Section 2: ISIS-II Version

The ISIS-II version of XYBASIC is supplied as an absolute file XYBAS starting in
RAM at 3280H, so to load XYBASIC under ISIS-II you just type XYBAS. ISIS-II
copies of XYBASIC are normally delivered on either a single density or double
density eight inch floppy disk.

The IOBYTE resides at location 3, and the default value for the top of available
RAM is determined from the monitor routine MEMCHK. Location 3283H
contains JMP GTPAR, and after initialization the JMP instruction at location
3280H may be used to return to direct mode from user routines. The
ROMSQuared default value bytes are at locations 3286H to 328AH.v

Section 3: Custom I/O Version

The Custom I/O version of XYBASIC allows XYBASIC to run on any 8080-based
microprocessor, with or without an operating system, from either RAM or ROM.
The Custom I/O version normally begins at 100H and assumes that RAM
begins at 2000H (8K) for Integer XYBASIC and 4000H (16K) for Extended
XYBASIC, but it may be specially ordered to begin at any specified location and
to assume RAM beginning at any specified location. The delivery medium for
Custom I/O versions may be paper tape (Intel HEX format), eight inch floppy
disk (CP/M or ISIS-II compatible, single or double density), or programmed
2708 or 2716 EPROMs.

Before using the Custom I/O version of XYBASIC, the addresses of routines to
perform elementary I/O operations must be patched into the JMP vector
beginning at 118E, as explained below.

The IOBYTE is stored in the first byte of RAM (normally 4000H) for Custom I/O
versions, and is set to 0 during initialization. Location 100H contains a JMP to
the initialization routine, and may be used to restart XYBASIC (repeating the
initialization dialog). Location 103H contains JMP GTPAR. Locations 106H
through 16211 contain various JMP instructions, as described below. The
ROMSQuared default value bytes are at locations 163H to 167H. After
initialization, user routines may return to direct mode by branching to location
168H.

To perform input / output operations in the CP/M and ISIS-II versions,
XYBASIC just makes calls through the operating system. In the Custom I/O
version XYBASIC instead calls one of the user routines located below the base of
XYBASIC, in a JMP vector at locations 118H through 15FH. As in the CP/M
and ISIS-II versions, the user can use four logical devices: CONsole (input and
output), ReaDeR (input only), PUNch (output only) and LiST (output only). The
routines involved are:

XYBASIC Programming Manual Page 141

CI (Console In) Returns a character in the A register from the active
CON device.

CO (Console Out) Sends a character from the C register to the active CON
device.

RI (Reader In) Returns an 8-bit character in the A register from the
active RDR device and returns Carry reset (0); when
end of file occurs the Carry is set (1) and the A register
returns 0.

PO (Punch Out) Sends an 8-bit character from the C register to the
active PUN device.

LO (List Out) Sends a character from the C register to the active LST
device.

CS (Console Status) Returns 255 (OFFH) in the A register if a character has
been typed on the active CON device, 0 if not.

The Custom I/O version of XYBASIC uses RI to LOAD programs, PO to SAVE
programs, and the CONsole for all other I/O operations. All output is echoed to
LO if <control-P> is typed. Because programs are SAVEd and LOADed in
XYBASIC’s internal format, SAVE and LOAD will not operate correctly unless
the PUN and RDR routines pass full 8-bit bytes, without manipulation of the
parity bit.

Each I/O routine first checks the IOBYTE and then branches to the desired
user-implemented device through the JMP vector at 118H to 15FH. The user
must patch a JMP to a device driver into the appropriate location in the vector
for each device he implements. The driver routines should always leave
unchanged all registers not specifically used by the routine. Notice that each
user CONsole device must have Console Status implemented (as well as Console
In and Console Out) for XYBASIC to operate correctly. If Console Status is not
implemented correctly, you will be unable to interrupt program execution by
typing <control-C>!

Section 6 of Chapter I above explains the use of the ASSIGN command and
IOBYTE function to change and interrogate the system IOBYTE, determining
which physical device implements a logical device.

It is possible to run a Custom I/O version of XYBASIC under CP/M or ISIS-II,
by patching the jump vector accordingly. However, doing so makes it difficult to
SAVE and LOAD programs as disk files.

Page 142 XYBASIC Programming Manual

Device Driver Locations

The locations of each I/O routine or driver are given in the code below. The JMP
vector starting at 106H allows the user access to XYBASIC’s I/O system (with
devices selected by the IOBYTE), and should NOT be patched by the user. The
JMP at location 160H is executed when you type <control-B>, and should be
patched to specify the entry point to your monitor or operating system.

ORG 100H
JMP XYBASIC ;start Of XYBASIC
JMP GTPAR ;GTPAR (to get CALL parameters) @ 103H

;JMP VECTOR FOR I/O SYSTEM (do not patch)
JMP CI ;console in @ 106H
JMP CO ;console out @ 109H
JMP RI ;reader in @ 10CH
JMP PO ;punch out @ 10FH
JMP LO ;list out @ 112H
JMP CS ;console status @ 115H

;JMP VECTOR FOR USER-DEFINED DEVICES (to be patched)
JMP UC0I ;user console 0 in @ 118H
JMP UC1I ;user console 1 in @ 11BH
JMP UC2I ;user console 2 in @ 11EH
JMP UC3I ;user console 3 in @ 121H
JMP UC0O ;user console 0 out @ 124H
JMP UC1O ;user console 1 out @ 127H
JMP UC2O ;user console 2 out @ 12AH
JMP UC3O ;user console 3 out @ 12DH
JMP UR0I ;user reader 0 in @ 130H
JMP UR1I ;user reader 1 in @ 133H
JMP UR2I ;user reader 2 in @ 136H
JMP UR3I ;user reader 3 in @ 139H
JMP UP0O ;user punch 0 out @ 13CH
JMP UP1O ;user punch 1 out @ 13FH
JMP UP2O ;user punch 2 out @ 142H
JMP UP3O ;user punch 3 out @ 145H
JMP UL0O ;user list 0 out @ 148H
JMP UL1O ;user list 1 out @ 14AH
JMP UL2O ;user list 2 out @ 14DH
JMP UL3O ;user list 3 out @ 151H
JMP UC0S ;user console 0 status @ 154H
JMP UC1S ;user console 1 status @ 157H
JMP UC2S ;user console 2 status @ 15AH
JMP UC3S ;user console 3 status @ 15DH

;MONITOR ENTRY POINT (to be patched)

XYBASIC Programming Manual Page 143

JMP XYBASIC ;exit (when <control-B> typed) @ 160H

;ROMSQuared DEFAULT VALUE BYTES (to be patched if desired)
DB 0 ;default WIDTH @ 163H
DW 1 ;default END OF MEMORY @ 164H
DW 0 ;default program address @ 166H

Sample I/O Patch

This section gives a sample i/o patch for a Custom I/O version of XYBASIC. You
can use the routines given here as a model for construction of an i/o patch for
your computer system.

This patch assumes that XYBASIC has been specially ordered to begin at
location 0A000H. The computer is assumed to support a single console device,
with port use as defined below. When a restart (RST 0) is performed, the
computer executes the code starting at location 40H, which resets the USART
used for console I/O and begins execution of XYBASIC. All other RST
instructions are ignored. Typing <control-B> also restarts XYBASIC.

Since the computer supports a single console device, the XYBASIC i/o JMP
table contains the same JMP instruction four times for each driver routine. To
simplify this patch the ReaDeR and PUNch devices are defined to be the same
as the CONsole, and characters sent to the LiST device are ignored.

;XYBASIC ENTRY POINT
A000 = XYBASIC EQU 0A000H ;START OF XYBASIC

;USART PORT NUMBERS
00EC = CIN EQU 0ECH ;CONSOLE DATA INPUT PORT
00EC = COUT EQU 0ECH ;CONSOLE DATA OUTPUT PORT
00ED = CCTL EQU 0EDH ;CONSOLE CONTROL PORT

;I/O BIT NUMBERS
0001 = TBA EQU 01H ;TRANSMIT BUFFER AVAILABLE
0002 = RBR EQU 02H ;RECEIVE BUFFER READY

;I/O DEVICE COMMANDS
00CF = MODE EQU 0CFH ;SET USART MODE
0025 = CMD EQU 025H ;SELECT NORMAL USART

;CODE GENERATION FOR RST INSTRUCTIONS
0000 ORG 0H ;RST 0
0000 C34000 JMP INIT ;INITIALIZE ON RESTART
0008 ORG 8H
0008 C9 RET
0010 ORG 10H
0010 C9 RET

Page 144 XYBASIC Programming Manual

0018 ORG 18H
0018 C9 RET
0020 ORG 20H
0020 C9 RET
0028 ORG 28H
0028 C9 RET
0030 ORG 30H
0030 C9 RET
0038 ORG 38H
0038 C9 RET

;DEVICE INITIALIZATION
0040 ORG 40H
0040 3ECF INIT MVI A,MODE
0042 D3ED OUT CCTL ;SET USART MODE
0044 3E25 MVI A,CMD
0046 D3ED OUT CCTL ;SET USART COMMAND MODE
0048 C9 RET ;BEGIN XYBASIC

;I/O DEVICE DRIVERS

;CONSOLE STATUS
004B DBED CSTAT: IN CCTL ;READ STATUS
004D E602 ANI RBR ;MASK TO CHARACTER READY
004F C8 RZ ;NOT READY, RETURN 0 IN A
0050 3EFF MVI A,0FFH ;READY, RETURN 0FFH IN A
0052 C300A0 RET

;CONSOLE IN
0053 DBED CONIN: IN CCTL ;READ STATUS
0055 E602 ANI RBR ;MASK TO CHARACTER READY
0057 CA5300 JZ CONIN ;WAIT IF NOT READY
005A DBEC IN CIN ;READ THE CHARACTER
005C C9 RET

;CONSOLE OUT
005D DBED CONOUT: IN CCTL ;READ STATUS
005F E601 ANI TBA ;MASK TO BUFFER AVAILABLE
0061 CA5D00 JZ CONOUT ;WAIT IF NOT AVAILABLE
0064 79 MOV A,C ;CHARACTER TO A
0065 D3EC OUT COUT ;WRITE THE CHARACTER
0067 C9 RET

;PUNCH OUT, DEFINED TO SEND CHARACTERS TO CONSOLE
005D = PUNOUT EQU CONOUT

;READER IN, DEFINED TO READ CHARACTERS FROM CONSOLE
0053 = RDRIN EQU CONIN

XYBASIC Programming Manual Page 145

;LIST OUT, DEFINED TO DO NOTHING
0068 C9 LOUT: RET

;XYBASIC DEVICE DRIVER JMP TABLE OVERLAY
A018 ORG XYBASIC+18H

;CONSOLE IN
A018 C35300 JMP CONIN
A01B C35300 JMP CONIN
A01E C35300 JMP CONIN
A021 C35300 JMP CONIN

;CONSOLE OUT
A024 C35D00 JMP CONOUT
A027 C35D00 JMP CONOUT
A02A C35D00 JMP CONOUT
A02D C35D00 JMP CONOUT

;READER IN
A030 C35300 JMP RDRIN
A033 C35300 JMP RDRIN
A036 C35300 JMP RDRIN
A039 C35300 JMP RDRIN

;PUNCH OUT
A03C C35D00 JMP PUNOUT
A03F C35D00 JMP PUNOUT
A042 C35D00 JMP PUNOUT
A045 C35D00 JMP PUNOUT

;LIST OUT
A048 C36800 JMP LOUT
A04B C36800 JMP LOUT
A04E C36800 JMP LOUT
A051 C36800 JMP LOUT

;CONSOLE STATUS
A054 C34B00 JMP CSTAT
A057 C34B00 JMP CSTAT
A05A C34B00 JMP CSTAT
A05D C34B00 JMP CSTAT

;MONITOR ENTRY POINT
A060 C34000 JMP INIT
A063 END

SAVEd Program Format

A program which is stored in n bytes of memory is SAVEd in the Custom I/O
version as a header block followed by ((n+1)/255) + 1 data blocks. The header
block is 13 bytes long:

Byte 1: Start byte = 3AH
Byte 2: Type byte = 0H
Bytes 3-10: File name, one to eight ASCII characters padded by ASC

Page 146 XYBASIC Programming Manual

Bytes 11-13:File type, ASCII characters XYB = 58H, 59H, 42H

Each data block contains the following bytes:

Byte 1: Start byte = 3AH
Byte 2: Type byte = 0H
Byte 3: Length byte = m, # of data bytes following
Bytes 4-(3+m):Data bytes containing source program
Byte 4+m: Checksum byte = sum of data bytes, mod 256

Additional data blocks follow only if the length byte contains 255.

The following assembly language routine indicates how SAVEd programs can be
loaded into memory, and may be used as a template for applications in which
the user wishes to manipulate SAVEd programs without using XYBASIC. The
desired file name should be stored at FILNAM. The file is read from the RDR
device and loaded starting at address DEST.

STBYTE EQU 3AH ;start byte
TYBYTE EQU 0 ;type byte

HEADER: DB STBYTE, TYBYTE
FILNAM: DS 8 ;ASCII filename, padded by spaces

DB ’XYB’ ;file type
LOAD: LXI H,HEADER;header location to HL

MVI C,13 ;header length to C
LOAD1: CALL RDRIN ;read a character

CMP M ;compare to header character
JNZ LOAD ;no match, try again
DCR C ;decrement count
JNZ LOAD1 ;read next header character
LXI H,DEST ;destination to HL

LOAD2: CALL RDRIN ;read character
CPI STBYTE ;compare to start byte
JNZ ERROR
CALL RDRIN ;read another
CPI TYBYTE ;compare to type byte
JNZ ERROR
CALL RDRIN ;read length byte
ORA A ;check if length 0
RZ ;done if length 0
MOV E,A ;length to E
INR A
PUSH PSW ;save length+1
MVI D,0 ;checksum to D

LOAD3: CALL RDRIN ;read a source character
MOV M,A ;store it
INX H ;point to next destination

XYBASIC Programming Manual Page 147

ADD D
MOV D,A ;update checksum
DCR E ;decrement count
JNZ LOAD3 ;load more characters from data block
CALL RDRIN ;read the checksum
CMP D ;compare to computed checksum
JNZ ERROR ;checksum error
POP PSW ;recover length+1
JZ LOAD2 ;length was 255, load more data blocks
RET ;otherwise LOAD is completed

ERROR: ... ;LOAD error routine

Saving and Loading Under Operating Systems

This section describes a simple way to use XYBASIC’s ROMSQuared features to
save and load XYBASIC user programs as files under operating systems other
than CP/M and ISIS-II. The method used is a CALL from XYBASIC of an
assembly language routine which first obtains parameters from XYBASIC and
then executes the appropriate system-specific file manipulation routine.

For purposes of illustration we assume that XYBASIC starts at location 100H,
that the assembly language saving and loading routines begin at 0A000H and
0A800H, and that memory above 0B000H can be used as a scratch RAM area
during program loading.

We also assume that the system-dependent routine DSAVE is passed the
following information:

A number of characters in filename
BC location of first filename character
DE location of first byte to save
HL location of last byte to save

Similarly, we assume that the system-dependent routine DLOAD is passed the
following:

A number of characters in filename
BC location of first filename character
DE location of first byte of scratch area

The XYBASIC commands to save a program are:

F% = FIRST ’FIRST LOCATION
L% = LAST ’LAST LOCATION
F$ = "FILENAME" ’DESIRED FILE
CALL #A000, F%, L%, F$ ’SAVE IT

Page 148 XYBASIC Programming Manual

and the assembly language save routine at location 0A000H is:

GTPAR EQU 103H ;entry point of routine GTPAR
ORG 0A000H
CALL GTPAR ;get first location address
MOV E,M
INX H
MOV D,M
PUSH D ;save first location
CALL GTPAR ;get last location address
MOV E,M
INX H
MOV D,M
PUSH D ;save last location
CALL GTPAR ;get filename address
MOV A,M ;length to A
INX H
MOV C,M
INX H
MOV B,M ;first filename char loc to BC
POP H ;last location to HL
POP D ;first location to DE

DSAVE: [System-dependent saving routine]
RET

Similarly, the commands to load a XYBASIC user program from the system are:

I% = #8000 ’SCRATCH AREA ADDRESS
F$ = "FILENAME" ’DESIRED FILENAME
CALL #A800, I%, F$ ’LOAD TO SCRATCH AREA
MOVE FROM I% ’FETCH FROM SCRATCH AREA

and the assembly language load routine at 0A800H is:

ORG 0AB00H
CALL GTPAR ;get scratch area address
MOV E,M
INX H
MOV D,M
PUSH D ;save scratch area location
CALL GTPAR ;get filename address
MOV A,M ;length to A
INX H
MOV C,M
INX H
MOV B,M ;location to BC
POP D ;scratch area location to DE

XYBASIC Programming Manual Page 149

DLOAD: [System-dependent loading routine]
RET

Section 4: INTEL SBC Series Versions

For users with INTEL SBC 80/10, 80/20 or 80/30 systems, the Custom I/O
version of XYBASIC is available with the device driver jump vector patched
accordingly. When ordering an SEC version, the user should specify whether
XYBASIC should operate coresident with the monitor or as a stand-alone
program.

Users with SBC 80/20 or 80/30 systems may also order a version of XYBASIC
which uses a hardware realtime clock. In this version the TIME command
described in Section 8 of Chapter I is eliminated, the DELAY command is
modified slightly, and the command SETTIME and function TIME$ are added to
XYBASIC.

The command SETTIME is used to initialize the real time clock. For example,

SETTIME H, M, S

initializes the realtime clock to H hours, M minutes and S seconds. The M and
S parameters are optional, and are defaulted to zero if not present.

The string function TIME$ returns the current time as a string of eight
characters, of the form "hh:mm:ss"; for example,

PRINT "TIME IS CURRENTLY "; TIME$

results in XYBASIC printing

TIME IS CURRENTLY hh:mm:ss

If no SETTIME has been executed, TIME$ returns the time since XYBASIC was
entered.

The DELAY command takes the form

DELAY formula1, formula2, formula3

where formula1 specifies the number of minutes, formula2 the number of
seconds, and formula3 the number of tenths of seconds to DELAY. The second
and third parameters are optional, and are defaulted to zero if not present. For
example, the command

DELAY 2, 15, 1

Page 150 XYBASIC Programming Manual

DELAYS for 2 minutes and 15.1 seconds before executing the next command.

In the hardware realtime SBC 80/20 version of XYBASIC, interval timer zero of
the onboard 8253 chip is programmed to interrupt the CPU every 50
milliseconds (mode 2). XYBASIC counts the number of interrupts since the last
SETTIME command to compute the current time of day. The accuracy of
XYBASIC’s time functions is determined by the accuracy of the CPU clock
crystal.

XYBASIC’s initialization code sets the 8259 interrupt controller for standard
8080 interrupts, locations 0 thru 38H. RST 0 is reserved for entry to XYBASIC
and RST 2 is reserved for the realtime clock interrupt. All other RSTs are
available for user interrupts.

The SEC 80/20 is shipped from the factory with interval timer zero strapped to
generate interrupt request 2 when the timer expires. This wire (from option pin
26 to 35, near the 8259 interrupt controller chip) must be present for the
realtime functions to work correctly. It is normally present because the interval
timer implements the single step function of the Intel monitor. It is available for
use by XYBASIC because the monitor is never resident at the same time as
XYBASIC.

Section 5: AMD 9511 Floating Point Version

Since the 8080 series of microprocessors does not support hardware floating
point operations, XYBASIC normally performs floating point manipulation by
software. However, XYBASIC is also available by special order in versions which
perform floating point operations with the AMD 9511 Arithmetic Processing
Unit.

The 9511 version of XYBASIC resides in less memory space than the software
floating point version. Floating point arithmetic operations are somewhat faster
than in the software floating point version, and trigonometric functions (SIN,
COS, TAN, ATN) are much faster.

The 9511 represents a floating point value in four bytes. A floating point 0 is
represented by four 0 bytes. For any other value, byte 1 contains the mantissa
sign in bit 7 and the two’s complement binary exponent in bits 6-0. Bytes 2-4
contain the normalized binary mantissa, with an assumed binary point to the
left of byte 2. Because of the representation used by the 9511, the range of
floating point values is roughly -9 * 10^18 to 9 * 10^18, as opposed to roughly
-1.7 * 10^38 to 1.7 * 10^38 for the software floating point version.

To order a 9511 version of XYBASIC, you must specify what ports your
computer uses to communicate with its 9511, in addition to the usual
information about which operating system you use.

XYBASIC Programming Manual Page 151

Section 6: XYBASIC Compiler

The XYBASIC Compiler is a program which takes a SAVEd XYBASIC program
as input and produces as output an INTEL HEX format object file containing a
runtime package plus the program; this HEX file may then be loaded and
executed. The resulting program will run in ROM, with the user specifying RAM
and ROM locations for the desired memory configuration. The compiler is
available in CP/M and ISIS-II versions.

Compiler Operation

To use the CP/M version of the compiler, you type either COMPILE or COMPILE
[filename]. To use the ISIS-II version, you type COMPIL or COMPIL [filnam]. In
either case the compiler will respond with

XYBASIC COMPILER {version} REV n.m

where {version} is CP/M or ISIS-II and REV n.m indicates the revision of the
compiler being used. If you specified a filename, the program [filename].XYB is
loaded; if not, the compiler prompts:

SOURCE FILE?

and waits for you to type a filename (up to eight characters long for CP/M, up to
six for ISIS-II) , optionally preceded by a disk name. The prompt is repeated if
the desired source file is not found. In responding to any compiler prompt the
user of the CP/M version can type either <rubout> or <control-U> to try again
after a typing error, or <control-C> to abort execution and return to CP/M. The
user of the ISIS-II version can use the usual line editing features of ISIS-II. Each
response must be terminated by a <carriage return>.

Next you specify the memory configuration. The compiler prompts:

START OF ROM (HEX)?

You should respond with one to four hexadecimal digits specifying the first
ROM address to be used for the object program. If you just type a <carriage
return>, a default value of 100H for CP/M or 3280H for ISIS-II is assumed. The
compiler prompts with:

START OF RAM (HEX)?

and you respond with another hexadecimal address. If a <carriage return> is
typed, the first address following ROM used by the object program is assumed.
Next the compiler prompts:

Page 152 XYBASIC Programming Manual

END OF RAM (HEX)?

and you type a third hexadecimal address. If you type <carriage return>, the
object program will find the highest available RAM address at runtime. Finally
the compiler prompts:

WIDTH (DECIMAL)?

and you type a decimal number less than 256 to specify the desired output
device column width. A default value of 72 is assumed if <carriage return> is
typed.

Next the compiler prints a map of memory usage, of the form

ROM USE: aaaaH TO bbbbH
PROGRAM: ccccH TO bbbbH
RAM USE: eeeeH TO ffffH
RAM BYTES FREE: ggggH

The first two lines indicate that the object program will reside in ROM between
aaaaH and bbbbH, with the runtime package itself at aaaaH to ccccH-1 and the
XYBASIC program at ccccH to bbbbH. For given values of START OF ROM and
START OF RAM the runtime package is independent of the source program;
therefore object program locations ccccH to bbbbH can be altered to execute
different compiled programs without changing locations aaaaH to ccccH-1. The
next line indicates RAM statically allocated for runtime package use. The final
line indicates the initial number of free bytes remaining below the end of RAM,
and appears only if you specified an END OF RAM address. If no free bytes
remain, or if the object program’s RAM and ROM use areas overlap, an error
message will appear and you can try specifying different addresses in response
to the compiler prompts.

Finally the compiler writes the object file as [filename].HEX, with the first ROM
location as the starting address. The object file is written on the disk specified
as the location of the source file.

Object File Execution

The result of executing the object file [filename].HEX is the same as LOADing
and RUNning [filename].XYB under the XYBASIC interpreter, with the following
exceptions.

1) UNTRAP mode is assumed, i.e. execution continues after nonfatal errors.
Error messages give the error line number, but do not print the bad line.

2) Any action which would return you to direct mode (fatal errors, STOP or
END, or typing <control-C>) will instead have the same effect as <control-B>,
i.e. will exit from XYBASIC and return to the monitor or operating system.

XYBASIC Programming Manual Page 153

3) Direct commands (NEW, RUN, LIST, CONT), program saving and loading
(SAVE and LOAD), and debugging commands (TRACE/UNTRACE,
TRAP/UNTRAP, BREAK/UNBREAK) produce nonfatal UF (Unimplemented
Feature) errors but have no other effect.

4) Input and output operations (Console In, Console Out, List Out, Console
Status) are performed through a jump vector located at the base of the runtime
package, just as in the Custom I/O version described in Section 3 above. In the
ISIS-II version the jump vector initially contains the appropriate monitor
addresses for the Intellec MDS.

In addition, REMarks and spaces (not within quoted strings) are removed from
the compiled program to conserve space.

Section 7: XYBASIC Runtime Module

The XYBASIC Runtime Module allows XYBASIC programs to be executed with
smaller memory overhead than the XYBASIC Interpreter. Like the XYBASIC
Compiler, the Runtime Module does not include direct mode, debugging
commands or program saving and loading; its intended use is the execution of
previously debugged programs rather than program development.

Like the XYBASIC interpreter, the Runtime Module examines five bytes near the
beginning of the Module for default values of WIDTH, END OF MEMORY and
program address. If the default width and end of memory values are not
specified, the Runtime Module prompts the user in the same manner as the
Interpreter. If the default program address is not specified, or if the location
specified does not contain the start of a XYBASIC program, the Runtime Module
prints the error message

PROGRAM NOT FOUND

and terminates execution, returning to the monitor or operating system (as if
<control-B> were typed) .

If the specified address does contain the start of a XYBASIC program, the
program is executed. The result is the same as LOADing and RUNning the
program under the XYBASIC Interpreter, with the following exceptions.

Direct commands (NEW, RUN, LIST, CONT), program saving and loading (SAVE
and LOAD) , ROMSQuared commands (MOVE and EXEC), editing commands
(AUTO, DELETE, EDIT and RENUM), and debugging commands (TRACE,
UNTRACE, BREAK and UNBREAK) produce nonfatal UF (Unimplemented
Feature) errors but have no other effect.

Page 154 XYBASIC Programming Manual

UNTRAP mode is assumed, i.e. execution continues after nonfatal errors. Error
messages give the error line number, but do not print the bad line.

Any action which would return control to direct mode (fatal errors, STOP or
END, or typing <control-C>) will instead have the same effect as <control-B>,
namely to exit from the XYBASIC Runtime Module and return to the monitor or
operating system.

Section 8: Customized OEM Versions

In addition to supporting the versions outlined above, Mark Williams Company
will perform modifications to customize XYBASIC to specific OEM requirements.

XYBASIC Programming Manual Page 155

Chapter III: SHORT FORM DESCRIPTION

This chapter describes each XYBASIC command and function and its error
conditions. The descriptions are intended for the user familiar with XYBASIC;
the tutorial in Chapter I explains commands in greater detail.

Section 1: Conventions

command A sequence of typed characters instructing XYBASIC to
perform a specific action. Example: PRINT

direct mode A command typed without a line number is in direct
mode, and is executed immediately by XYBASIC.
Example: RUN

formula Any number, numeric variable, or legal combination of
numbers, numeric variables, operators and functions.

line number An integer between 1 and 65535 identifying a
command in a program.

logical device A logical device name: LST#, PUN#, RDR# or CON#.

logical formula A formula which evaluates to true or false, using
relational or logical operators.

program A sequence of numbered commends.

program mode A command preceded by a line number is in program
(or indirect) mode. XYBASIC does not execute program
mode commands immediately, but adds them to the
current program instead.

quoted string A string of characters enclosed in quotes (

reserved word A sequence of characters indicating a XYBASIC
command or function.

string Any quoted string, string variable, or legal combination
of quoted strings, string variables, and string
functions.

unquoted string Any sequence of printable characters.

Page 156 XYBASIC Programming Manual

variable A name used to refer to stored data. The name must
begin with a letter and may contain up to eight letters
or digits, but must not contain any reserved word.
[Extended] The variable name may end with !, %, or $.
Examples: A, DOG, S$, TEMP1%

<control-chars> Angle brackets are not to be typed, but rather indicate
control characters (nonprinting characters typed by
depressing the CONTROL key and another key
simultaneously). Example: <control-C>

[] Brackets are not to be typed, but rather indicate that
the user is to supply the bracketed item. Example:
GOTO [line number] indicates GOTO 50 is legal.

... Ellipses indicate that the information to be supplied
can be repeated an arbitrary number of times.

Section 2: Direct Commands

The following commands may be used only in direct mode. An II error occurs if
the command is used in program mode.

NEW
Deletes the current program and clears all variables to zero or [Extended] the
null string. Turns error TRAP on and TRACE off, and clears breakpoints and
ENABLEd interrupts.
[Extended] Resets default variable type to floating point.
[CP/M Disk] CLOSES all OPENed files.

RUN [line number]
Begins execution of the current program, starting at the specified line number.
If no line number, starts at the lowest line number. Clears all variables and
ENABLEd interrupts, but does not clear line number breakpoints. RESTOREs
the READ pointer.
[CP/M Disk] CLOSEs all OPENed files.

CONT
Continues execution after STOP, END, <control-C>, or BREAK with # option. A
CN error occurs if XYBASIC is unable to continue, for example if an error
occured or if the program has been edited since it was interrupted.

Section 3: Traditional BASIC Commands

LET [variable] = [formula]
Assigns the variable the value of the formula. The LET is optional.
[Extended] A TM error occurs if a string value is assigned to a numeric variable,

XYBASIC Programming Manual Page 157

or vice versa.
Examples:
LET X = 15 * Y
S$ = "CAT" [Extended]

PRINT [item list]
Prints the given items, which may be formulas or strings. Prints items seperated
by semicolon (;) adjacent to each other. Tabs to next fourteen-character column
field (eight in integer XYBASIC) between items seperated by comma (,). Prints
<carriage return> and <1inefeed> if line is not terminated with comma or
semicolon. Question mark (?) may be used as abbreviation for PRINT.
Examples:
PRINT "X ="; X, "Y ="; Y
? I, J

LIST [line number1], [line number2]
Lists the current program. If no line number is specified, the entire program is
listed. If line number1 is present, the listing starts at that line. If line number2
is present, the listing ends at that line. A listing may be aborted by <control-C>,
suspended by <control-S> and resumed by <control-Q>, echoed to the LST
device by <control-P>, or suppressed and resumed on the CON device by
repeated <control-O>.
Example:
LIST 10, 100

CLEAR
Sets all variables to zero or [Extended] the null string. Removes all breakpoints.

CLEAR [formula]
[Extended] Allocates amount of string space given by value of formula. Clears all
variables and removes breakpoints.
Example:
CLEAR 1000

GOTO [line number]
Transfers control to the specified line number. A US error occurs if the line does
not exist.
Example:
GOTO 10

INPUT [quoted string] [variable1], [variable2]...
Requests data from the console, prompting the user with the optional string
followed by ?. Assigns values typed in to the variables listed. If too many values
are typed, the message EXCESS IGNORED is printed. If a bad value is typed,
the message REDO is printed and the user is reprompted. An ID error occurs if
INPUT is used in direct mode.
[Extended] Leading spaces are removed from unquoted string values.
Examples:
10 INPUT X, Y, Z

Page 158 XYBASIC Programming Manual

10 INPUT "VALUE FOR A" A

REM [unquoted string]
Allows insertion of comments into program. The string is ignored. REMarks can
be terminated only with <carriage return>, not with colon (:).
Example:
REM THIS IS A COMMENT

IF [logical formula] THEN [line number]
IF [logical formula] THEN [command]
Evaluates the logical formula. If true, transfers control to the line number or
executes command following THEN. If false, transfers control to line following
the IF / THEN command.
Examples:
IF X = 15 THEN 100
IF X = 10 OR Y > 14 THEN PRINT "DONE"

STOP
Stops program execution, prints a break message on the console and returns to
direct mode.

END
Ends program execution and returns to direct mode.
[CF/M Disk] CLOSEs all OPENed files.

GOSUB [line number]
RETURN
GOSUB transfers control to the subroutine at the specified line number. A US
error occurs if the line does not exist. RETURN exits from the subroutine and
returns control to the command following the most recent GOSUB executed. A
RG error occurs if RETURN is executed without a corresponding GOSUB.
RETURN also exits from a routine used to process an ENABLEd interrupt,
returning control to the program where it was interrupted. The depth of GOSUB
nesting allowed is limited by available memory space, and an OM error occurs if
insufficient space remains.
Example:
GOSUB 500

READ [variable1], [variable2]...
DATA [item1], [item2]...
RESTORE [line number]
READ assigns the specified variables the values from the next unused DATA
command. The DATA items may be numbers or [Extended] strings; leading
spaces are removed from unquoted string data. RESTORE allows DATA to be
reused by resetting the DATA pointer to the specified line number, or to the
beginning of the program if no line number is specified. An OD error occurs if a
READ is executed when no more DATA are available, and an ID error occurs if
DATA is used in direct mode.
Examples:

XYBASIC Programming Manual Page 159

READ X, Y
10 DATA 10, -20, 50
RESTORE 5000

FOR [variable] = [formula1] TO [formula2] STEP [formula3]
Indicates the beginning of a FOR / NEXT loop. First the initial value formula1 is
assigned to the variable. The bound formula2 and increment formula3 are
evaluated; if STEP [formula3] is omitted the increment is assumed 1. Then the
command after the FOR is executed, unless either the increment is positive and
the bound is less than the initial value, or the increment is negative and the
bound is greater than the initial value. In that case the loop is not entered:
XYBASIC scans through the program for the matching NEXT command and
executes the command after it instead. A FR error occurs if the matching NEXT
is not found.
Examples:
FOR I = 1 TO 100
FOR I = 0 TO 30 * X STEP 10

NEXT [variable1], [variable2]...
Indicates the end of a FOR / NEXT loop. The increment is added to the current
value of the matching FOR variable and the result is compared to the bound. If
the loop continues, the command after the matching FOR is executed; otherwise
the command after the NEXT is executed. A NF error occurs if NEXT is executed
without a corresponding FOR or if the optional variable names given do not
match.
Examples:
NEXT
NEXT J, I

ON [formula] GOTO [line number], [line number]...
ON [formula] GOSUB [line number], [line number]...
Transfers control to the Ith line number in the list, where I is the truncated
value of the formula. An ON error occurs if the value of I is less than one or
greater than the number of line numbers in the list.
Examples:
ON I GOTO 100,200,300
ON (N MOD 2) + 1 GOSUB 1000, 2000

DIM [variable] (formula, ...)
Allocates space for an array with name specified by variable, and initializes all
array elements to zero or [Extended] the null string. A DD error occurs if an
array is DIMensioned more than once. A BS error occurs if the value of a
subscript is less than zero or greater than the given array bound. An OM error
occurs if the array is too large for remaining free memory.
Example:
10 DIM A(100,10), B(N*2)

DEF FN [variable1] (variable2, ...) = [formula]
Defines a function named FN variable1. The parameters (variable2, ...) are

Page 160 XYBASIC Programming Manual

optional. A DD error occurs if a function is DEFined more than once, and an ID
error occurs if DEF FN is used in direct mode.
Example:
10 DEF FN A (X) = X * 3 + 4

DEF INT [letter1] - [letter2]
DEF SNG [letter1] - [letter2]
DEF STR [letter1] - [letter2]
[Extended] Resets the default variable type for variable names starting with
letter1 through letter2 to INTeger, SiNGle precision floating point or STRing. -
[letterZ] is optional; if omitted, resets the default variable type for variable
names starting with letter1.
Examples:
DEF INT I
DEF STR A - B

Section 4: Numeric Formulas

A variable name is a letter followed by up to seven additional letters or digits,
but not containing any reserved word. An array variable (declared in a DIM
command) must have a subscript (formula, ...). A BS error occurs if each
subscript is not between 0 and the declared size of the array. A SN error occurs
if a variable has too few or too many subscripts.
[Extended] The variable name may be followed by !, %, or $.
Examples:
X
DOG$ [Extended]
A (I, J)

Integer numbers between -32768 and 32767 may be specified in decimal, in
binary (prefixed by &) or in hexadecimal (prefixed by #).
Examples:
100
-32768
&11011

[Extended] Numbers may be specified as sequences of decimal digits with
optional decimal point, followed by an optional exponent. The exponent (if any)
consists of the letter E, an optional sign, and decimal digits. The vaiile of the
number may be in the approximate range -1 .7 * 10^38 to 1 .7 * 10^38, and
has a precision of more than six decimal digits.
Examples:
3.14159
1.5E-4

A formula is any legal combination of numeric variables, numbers, parentheses,
and the operators and functions listed below.

XYBASIC Programming Manual Page 161

+ addition
- subtraction, negation
* multiplication
/ division
\ integer division [Extended]
^ exponentiation [Extended]
MOD remainder

Arithmetic operators apply the desired operation to the given arguments. An OV
error occurs if the result is outside the range of representable values.
Examples:
X = Y + 1
X = Y * 5 + (Z + 1) / 2
X = Y MOD 10
X = Y ^ (Z \ 2) [Extended]

= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

Relational operators compute the result (true or false) of comparing formulas or
[Extended] string formulas.
Examples:
IF X = 0 THEN GOSUB 100
IF I <> 0 THEN X = A (I)
IF A$ < "CAT" THEN = A$ = STR$ (X) [Extended]

AND logical and
NOT logical not
OR logical inclusive or
XOR logical exclusive or
));

Logical operators apply the desired operation bitwise to the given 16-bit integer
arguments, and can be used for bit manipulation or for constructing logical
formulas.
Examples:
IF NOT (X = 0 AND Y = 0) THEN GOSUB 100
X = Y XOR &1100

Within a formula, operators occurring higher on the following list are evaluated
first; operators on the same level are evaluated from left to right.

JOIN
^ [Extended]

*, /, MOD, \ [Extended]
+, -

=, <, >, <=, >=, <>

Page 162 XYBASIC Programming Manual

NOT
AND

OR, XOR

Example:
IF NOT X = 0 AND Y + 3 * Z <= 2 * -I + 1 THEN 100
means IF ((NOT (X = 0)) AND (Y + (3 * Z)) <= (2 * (-I) + 1)) THEN 100

ABS (formula)
Returns the absolute value of the formula.
Example:
X = ABS (-5 * Y)

SGN (formula)
Returns one if the sign of the formula is positive, zero if zero, and minus one if
negative.
Example:
X = SGN (Y)

SQR (formula)
[Extended] Returns the square root of the value of formula. An FC error occurs
if the argument is negative.
Example:
PRINT SQR (2)

LOG (formula)
[Extended] Returns the natural logarithm of formula. An FC error occurs if the
argument is less than or equal to 0.
Example:
X = LOG (10)

EXP (formula)
[Extended] Returns e ^ formula, where e is the Euler number 2.71828...
Example:
X = EXP (Y + Z)

COS (formula)
SIN (formula)
TAN (formula)
[Extended] Returns the cosine, sine or tangent of the value given in radians by
formula.
Example:
X = SIN (1 - Y ^ 2)

ATN (formula)
[Extended] Returns the arctangent in radians in the range -pi/2 to pi/2 of the
value of formula.
Example:
X = ATN (I + J)

XYBASIC Programming Manual Page 163

INT (formula)
[Extended] Returns the integer part of the formula.
Example:
I$ = 2 * INT (X)

RND
[Integer] Returns a pseudorandom number between 0 and 32767. The formula
X + RND MOD (Y-X+1) returns a pseudorandom number between X and Y.
Examples:
X = RND
X = 1 + RND MOD 10

RND (formula)
[Extended] Returns a pseudorandom number between 0 and the value of the
given formula. RND (O) returns a pseudorandom number between 0 and 1.
Example:
X = RND (1)

FRE
Returns the amount of free memory in bytes.
Example:
PRINT UNS (FRE)

UNS (formula)
[Extended] Returns the value of the formula, considered as an unsigned 16-bit
integer representation.
[Integer] May be used only in PRINT commands.
Example:
PRINT UNS (-1)

FN [variable] (formula, ...)
Evaluates the referenced user-defined function. The number of parameters
(formula, ...) must agree with the number in the DEFinition.
Example:
X = FNA(45)

RESET (formula1, formula2)
SET (formula1, formula2)
TEST (formula1, formula2)
RESET and SET set the bit specified by formula2 to zero or one in integer
formula1. TEST returns the value of the bit specified by formula2 in formula1.
Examples:
X = SET(Y, 0)
X = RESET(X, 5)
X = TEST (Y, 0)

ROTATE (formula1, formula2)
LSHIFT (formula1, formula2)

Page 164 XYBASIC Programming Manual

RSHIFT (formula1, formula2)
Right rotates, left shifts or right shifts the integer value of formula1 the number
of binary places specified by formula2.
Examples:
= ROTATE (Y, 5)
X = LSHIFT (X, 3)
X = RSHIFT (X, 5)

BCD (formula)
BIN (formula)
BCD converts the given formula from binary to BCD representation, and BIN
converts from BCD to binary representation. An FC error occurs if the argument
is outside the domain of the function.
Examples:
X = BCD (100)
X = BIN (#64)

LSBYTE (formula)
MSBYTE (formula)
[formula1] JOIN [formula2]
LSBYTE and MSBYTE return the least or most significant 8 bits of the 16-bit
integer value of the formula. JOIN concatenates two 8-bit values into a 16-bit
value.
Examples:
X = LSBYTE (30050)
X = MSBYTE (30050)
X = #F JOIN I

GET
Returns ASCII value (with parity bit reset) of any character typed; returns 0 if
no character typed.
Example:
IF GET = 89 THEN PRINT "YES"

IN (formula)
SENSE (formula1, formula2)
IN returns the value on the input port specified by formula. SENSE returns the
value of bit number formula2 on the input port formula1.
Examples:
X = IN (10)
X = SENSE (10, 7)

PEEK (formula)
Returns the value in the memory location specified by formula.
Example:
X = PEEK (48)

IOBYTE
Returns the value of the system I/O byte.

XYBASIC Programming Manual Page 165

Example:
X = IOBYTE

SPC (formula)
TAB (formula)
SPC prints formula spaces. TAB spaces to the column specified by formula.
Each may only be used in PRINT commands.
Example:
PRINT TAB (10); "THIS STARTS IN COLUMN 10"
PRINT SPC (10)

POS
Returns the column number of the most recent character PRINTed by XYBASIC.
Example:
IF POS < 20 THEN PRINT TAB(20);

FIRST
LAST
Returns the address of the first or last location used to store the current
XYBASIC program.
Example:
PRINT LAST - FIRST + 1

Section 5: String Formulas

The string functions in this section may only be used in Extended XYBASIC.

A quoted string is a string of characters enclosed in quote marks (" "). The string
containing no characters is called the null string. A string formula is any quoted
string, string variable, or legal combination of quoted strings, string variables,
and string functions. A TM error occurs if a numeric argument is used where a
string is expected, or vice versa. An OS error occurs if XYBASIC runs out of
space for string storage.

LEN (string)
Returns the length of the string, i.e. the number of characters it contains.
Example:
PRINT LEN (A$), A$

[string1] + [string2]
Returns the string consisting of string1 followed by string2, i.e. concatenates
the strings. A LS error occurs if the result is longer than 255 characters. An ST
error occurs if string1 or string2 is too complicated a string formula.
Example:
A$ = B$ + "ABC"

LEFT$ (string, formula)
RIGHT$ (string, formula)

Page 166 XYBASIC Programming Manual

Returns the leftmost or rightmost formula characters of string. An FC error
occurs if the value of formula is less than 0 or greater than 255.
Example:
PRINT RIGHT$ (A$, LEN (A$) - 2)

MID$ (string, formula1, formula2)
Returns the substring of string formula2 characters long, starting at character
formula1. If formula2 is omitted, returns the right part of the string starting at
character formula1. An FC error occurs if either formula is less than 0 or
greater than 255.
Examples:
A$ = MID$ (B$, 4, 3)
A$ = MID$ (B$, I) + LEFT$ (B$, I)

CHR$ (formula)
Returns the string containing the character with ASCII value formula.
[Integer] May be used only in PRINT commands.
Example:
PRINT CHR$ (ASC ("A") + I)

ASC (string)
Returns the ASCII value of the first character of string. An FC error occurs if its
argument is the null string.
Example:
PRINT ASC ("A")

INSTR (formula, string1, string2)
Returns the first character position at which string1 contains the substring
string2. If optional formula is specified, returns the first character position
greater than or equal to formula at which string1 contains string2.
Examples:
I = RIGHT$ (A$, INSTR (A$, "Mr. ") + 4)
I = INSTR (5, A$, "CA")

GET$
Returns string consisting of character typed, if any; returns null string if no
character typed.
Example:
IF GET$ = "Y" THEN PRINT "YES"

STR$ (formula)
Returns the value of formula as a string of characters, as PRINTed by XYBASIC.
Example:
A$ = "$" + STR$ (X)

VAL (string)
Returns the numeric value of the constant represented by string.
Example:
PRINT VAL ("1.5E3")

XYBASIC Programming Manual Page 167

FRE$
[Extended] Returns the amount of free string space in bytes.
Example:
PRINT FRE$

BIN$ (formula)
HEX$ (formula)
OCT$ (formula)
Returns string consisting of binary, hexadecimal or octal representation of
integer formula.
Example:
PRINT HEX$ (I + J)

Section 6: Input / Output Commands

NULL [formula]
Instructs XYBASIC to send the console the number of nulls specified by formula
after each <carriage return> and <line feed>; this number is initially 0. A BY
error occurs if the value of the formula is not an 8-bit quantity.
Example:
NULL 5

ASSIGN [logical device] [formula]
Reassigns the logical device to the physical device specified by formula. A FC
error occurs if the value of the formula is not between 0 and 3.
Example:
ASSIGN RDR# 2

SAVE [quoted string]
[Custom I/O] Saves the current program through the PUNch device in format
described in Chapter II, Section 3. The quoted string may consist of one to eight
upper case letters and digits.
Example:
SAVE "EXAMPLE"

LOAD [quoted string]
[Custom I/O] Loads a program through the ReaDeR device. If the quoted string
is omitted, XYBASIC loads the first program it finds. Otherwise XYBASIC
continues reading until it finds the specified program. An RO error occurs if
XYBASIC is not addressing its working space. A CS error occurs if the LOAD is
unsuccessful.
Example:
LOAD "SAMPLE"

SAVE [diskname] [quoted string]
SAVE [diskname] [quoted string] ,A
SAVE [diskname] [quoted string] ,H

Page 168 XYBASIC Programming Manual

[ISIS-II] Saves the current program as a disk file. The diskname is optional, and
:F0: is assumed if it is omitted. The quoted string may contain one to six upper
case letters and digits. If neither ,A nor ,H is specified, the program is saved in
XYBASIC internal representation, as a file string.XYB. If ,A is specified, the
program is saved in ASCII representation, as a file string.BAS. If ,H is specified,
the program is saved in Intel HEX format, as a file string.HEX. A DK error
occurs if a disk operation is unsuccessful.
Examples:
SAVE "EXAMPL" ’SAVE :F0:EXAMPL.XYB
SAVE :F1:"EX2", H ’SAVE :F1:EX2.HEX

LOAD [diskname] [quoted string]
LOAD [diskname] [quoted string] ,A
LOAD [diskname] [quoted string] ,H
[ISIS-II] Loads the program from the specified file. An RO error occurs if
XYBASIC is not addressing its working space. A DK error occurs if a disk
operation is unsuccessful.
Examples:
LOAD "EXAMPLE" ’LOAD :F0:EXAMPL.XYB
LOAD :F1:"EX2",H ’LOAD :F1:EX2.HEX

SAVE [string] ,A
[CP/M] Saves the current program as a disk file. The string specifies the file
name, and may consist of an optional disk name followed by one to eight letters
or digits. The currently logged disk is assumed if no disk name is given. The
suffix ,A is optional; if omitted, the program is saved in XYBASIC internal
representation, as a file string.XYB. If ,A is specified, the program is saved in
ASCII representation, as a file string.BAS. A DK error occurs if a disk operation
is unsuccessful.
Examples:
SAVE "EX1" ’SAVE EX1.XYB ON LOGGED DISK
SAVE "B:GAME",A ’SAVE B:GAME.BAS

LOAD [string] ,A ,R
[CP/M] Loads the program from the specified file. The suffix ,A is optional; if
specified, XYBASIC loads the ASCII file string.BAS. The ,R suffix is optional; if
specified, XYBASIC RUNs the file after loading it. An RO error occurs if
XYBASIC is not addressing its working space. A DK error occurs if a disk
operation is unsuccessful.
Example:
LOAD "EX1", R ’LOAD EX1.XYB AND RUN IT
LOAD "B:GAME",A ’LOAD B:GAME.BAS

Section 7: Control Commands

TIME
DELAY [formula1], [formula2], [formula3]
TIME calibrates the DELAY command for nonstandard 8080 systems; it sends a

XYBASIC Programming Manual Page 169

bell character to the console, then waits for two <carriage return>s seperated by
exactly 60 seconds. DELAY suspends program execution for formula1 minutes,
formula2 seconds and formula3 hundredths of seconds, where formula2 and
formula3 are optional. Typing any character terminates the DELAY and
resumes program execution.
Example:
DELAY 0,5,50

OUT [formula1], [formula2]
Outputs the value of formula2 on the output port specified by formula1. A BY
error occurs if either formula is not an 8-bit quantity.
Example:
OUT 100, X

POKE [formula1], [formula2]
Puts the value of formula2 into the memory location specified by formula1. A BY
error occurs if formula2 is not an 8-bit quantity.
Example:
POKE 25, X

CALL [number], [parameter1], [parameter2]...
Calls the machine language subroutine at location specified by number. The
parameters are optional, and may be either [variable] or *[array variable]. The
subroutine GTPAR returns information about the next parameter in the list,
with type information passed in the A register and additional information in
other registers as required.
Example:
CALL #8000, I, *A, B(1)

SCALL [number], [integer var1], [integer var2], [integer var3]
Calls the machine language subroutine at location specified by number. If the
optional variables are present, their values are passed in registers BC, DE and
HL, and the values in BC, DE and HL when the routine returns are assigned to
the variables. An MC error occurs if more than three parameters are specified or
if the parameters are not integer variables.
Example:
SCALL #7400, X

WAIT [formula1], [formula2], [formula3], $
Suspends processing until the port specified by formula1 has the value
specified by formula2, masked by optional formula3. The optional $ indicates
processing is to continue if any bit matches. A BY error occurs any of the
formulas are not 8-bit quantities.
Example:
WAIT 10, 0

ENABLE [line number], [formula1], [formula2], [formula3], $
Specifies an interrupt condition to be tested before each command is executed.
The condition is fulfilled if the value on input port formula1 matches the value

Page 170 XYBASIC Programming Manual

of formula2, masked by optional formula3; if the optional $ is present, the
condition is fulfilled if any bit matches. If it is not fulfilled, program execution
continues normally; if it is fulfilled, an interrupt occurs and control is
transferred to the subroutine at the given line number. An EN error occurs if
more than eight interrupts are ENABLEd simultaneously, and an ID error
occurs if ENABLE is used in direct mode.
Example:
10 ENABLE 100, 22, &101

DISABLE [line number]
Removes the interrupt set by the given line number; removes all interrupts if no
line number is given.
Example:
DISABLE 10

RANDOMIZE [formula]
Uses formula to reinitialize the pseudorandom number generator.
Example:
RANDOMIZE 125

Section 8: Debugging Commands

TRACE
UNTRACE
Turns the trace feature on or off. When on, the number and contents of each
executed line and the value of each modified variable is printed on the console.

TRAP
UNTRAP
Turns the error trap on or off. When on, XYBASIC returns to direct mode after
errors. When off, XYBASIC tries to recover and continue execution after errors.

BREAK [line number], [formula]; [variable1], [variable2]... ; $
Sets a breakpoint on the given line number, so a break message is printed
whenever the line is executed. If the optional formula is present, the break
occurs only after the line has been executed formula times. If any variables are
listed, their names and values are also printed when the break occurs.
XYBASIC then returns to direct mode if the optional $ is present.
Examples:
BREAK 100; $
BREAK 10, 20; A, B; $

BREAK [variable1], [variable2]...
Sets breakpoints on the given variables, so whenever they are modified the
variable name and value are printed.
Example:
BREAK A, B, C

XYBASIC Programming Manual Page 171

UNBREAK [line number]
UNBREAK [variable1], [variable2]...
Removes breakpoints set on line numbers or variables, and removes all
breakpoints if the optional line number is omitted.
Examples:
UNBREAK 100
UNBREAK I, J, K

Section 9: ROMSQuared Commands

EXEC [formula]
If optional formula is given, XYBASIC addresses the program at specified
location rather than the program in working space. If the formula is omitted,
addresses the program in working space.
Example:
EXEC #8000

MOVE FROM [formula]
MOVE TO [formula]
MOVE FROM copies the program from the specified location to XYBASIC’s
working space. MOVE TO copies the program from working space to the
specified location. MOVE does not change the location of the program XYBASIC
is addressing. An RO error occurs if the specified location does not contain a
legal XYBASIC program (MOVE FROM), or if the location is not RAM (MOVE
TO).
Example:
MOVE TO #A000

Section 10: Editing Commands

The following commands may be used only in editing versions of XYBASIC. An
RO error occurs if an editing command is attempted while XYBASIC is
addressing a program outside its working space. An II error occurs if an editing
command is attempted in program mode.

AUTO [line number 1], [line number 2]
Allows entering new lines of a program without typing line numbers, starting at
line number 1 with increment line number 2. Both arguments are optional, and
are defaulted to 10 if not present. XYBASIC prompts with line number of next
line (followed by an asterisk if a line with the given number exists in the current
program, or a space if not), and waits for user to enter a line. XYBASIC exits
from AUTO mode when <control-C> is typed or when <carriage return> is typed
at the beginning of a line. A SN error occurs if a line number is typed at the
beginning of an AUTO mode line.
Examples:
AUTO 100,20
AUTO

Page 172 XYBASIC Programming Manual

DELETE [line number 1], [line number 2]
Deletes section of XYBASIC program starting at line number 1 and ending at
line number 2. If line number 2 is omitted, deletes line number 1. If specified
line numbers are not found, deletes all lines following line number 1 and
preceding line number 2. A US error occurs if line number 2 is omitted and line
number 1 is not found.
Example:
DELETE 110,150

EDIT [line number]
Allows changing line given by line number of current program without retyping
entire line. If the line number is omitted, EDITs the line most recently added to
the program or line in which most recent error occurred. XYBASIC types the
specified line, then waits for user to type editing commands as described under
Special Characters in Section 12 below. Typing <carriage return> ends the
editing process and returns user to direct mode. A US error occurs if the
specified line is not found. An EX error occurs if a line containing too many
characters is EDITed.
Example:
EDIT 120

RENUM [line number 1], [line number 2], [line number 3]
Renumbers the current program, with line number 1 becoming line number 3
and successive line numbers incremented by line number 2. If line number 3 is
omitted, it is assumed to be the same as line number 1. If line number 2 is
omitted, it is assumed to be 10. If line number 1 is omitted, it is assumed to be
the first line number of the program. A US error occurs and no renumbering
takes place if the specified renumbering is impossible. A US error occurs and
renumbering takes place if the program contains references to nonexistent line
numbers.
Examples:
RENUM 10, 100, 1000
RENUM

Section 11: CP/M Sequential Disk Commands

The following commands and function may be used only in CP/M XYBASIC
with sequential disk operations.

OPEN I, @[formula], [string]
OPEN O, @[formula], [string]
OPEN U, @[formula], [string]
Opens a disk file for Input, Output or Update. The formula specifies an integer
file number between 1 and 255 associated with the file. The string specifies a
filename, and may consist of an optional disk name, a filename, and an optional
filetype. A SN error occurs if the filename is specified incorrectly. A BF error
occurs if the formula is not between 1 and 255. A FN error occurs if a

XYBASIC Programming Manual Page 173

nonexistant file is OPENed for Input or Update. A FO error occurs if the
filename or file number is already associated with an OPEN file. An OP error
occurs if too many files are OPENed simultaneously.
Examples:
OPEN I, @1, "OLD.DAT"
OPEN O, @2, "NEW.DAT"
OPEN U, @3, "B:UPDATE.DAT"

CLOSE
CLOSE @[formula]
Closes all files or the file with file number formula. A BF error occurs if the
specified file is not OPEN.
Example:
CLOSE @2

PRINT @[formula], [item list]
Sends information in item list to file number formula. The items may be
formulas or strings. Sends items separated by semicolon (;) adjacent to each
other. Tabs to next fourteen-character column field between items seperated by
comma (,). Sends <carriage return> and <11nefeed> if line not terminated with
comma or semicolon. Question mark (?) may be used as abbreviation for PRINT.
If value of formula is 0, PRINTs items on the console. A BF error occurs if the
value of formula is not 0 or the number of an OPEN file. A DF error occurs if the
disk is full. A FM error occurs if the specified file is OPEN for Input.
Examples:
PRINT @1; "J = "; J;
PRINT @I; A; B; C

MARGIN @[formula1], [formula2]
Specifies formula2 as maximum width for output lines on file number formula1.
If value of formula1 is 0, changes width of console device output line to
formula2. A BF error occurs if the file number formula1 is not 0 or the number
of an OPEN file. A BY error occurs if the width formula2 is greater than 255.
Example:
MARGIN @1, 50

INPUT @[formula], [variab1e1], ...
Reads information from file number formula and assigns to variable1,... If value
of formula is 0, performs a normal INPUT from the console. Does not prompt or
give REDO or EXCESS IGNORED messages when reading from file. A BF error
occurs if the file number formula is not 0 or the number of an OPEN file. A FM
error occurs if the specified file is OPEN for Output or Update. A FI error occurs
if a bad item is read during INPUT. An EF error occurs if INPUT tries to read
past the end of file. An ID error occurs if INPUT is used in direct mode.
Example:
10 INPUT @2, I, J, K

LINPUT [string variable]
LINPUT @[formula], [string variable]

Page 174 XYBASIC Programming Manual

Reads a line of characters from the console or from file number formula and
assigns string variable the string consisting of the characters, not including
<carriage return>. Does not prompt. If value of formula is 0, does a LINPUT
from the console. A BF error occurs if the file number formula is not 0 or the
number of an OPEN file. A FM error occurs if the specified file is OPEN for
Output or Update. An EF error occurs if LINPUT tries to read past the end of
file. An ID error occurs if LINPUT is used in direct mode.
Example:
10 LINPUT @I, S$

EOF (formula)
Returns -1 if the file number formula contains more characters, and returns 0 if
not. A BF error occurs if formula is not the number of an OPEN file. An FM
error occurs if formula is the number of a file OPEN for Output or Update.
Example:
70 IF NOT EOF (1) THEN GOTO 50

DIR [string]
Prints the names of all files with filenames matching the given string. If string is
omitted, prints the names of all files on the currently logged disk.
Example:
DIR "B:*.XYB"

SCRATCH [string]
Erases the file named string from the disk.
Example:
SCRATCH "TEMP.DAT"

CLEAR @[formula]
Tells XYBASIC to allocate space allowing up to formula disk files to be OPEN
simultaneously. Variables are CLEARed. An OM error occurs if insufficient
memory exists to allocate the given number of files.
Example:
CLEAR @3

Section 12: Special Characters

: Used between commands to allow multiple commands
on a single line. Example: PRINT "HI" : X = 14 : GOTO
100

’ Delimits an on-line comment. The characters following
the ’ are ignored. Example: PRINT "START" ’START OF
PROGRAM

? Abbreviation for PRINT. Example: ?X

XYBASIC Programming Manual Page 175

! [Extended] Indicates a floating point variable.

% [Extended] Indicates an integer variable.

$ [Extended] Indicates a string variable.

<return> Carriage return (the RETURN or CR key) must be
typed at the end of each line typed to XYBASIC.

<rubout> Erases the last character typed, echoing erased
characters within slashes.

<control-b> Exits from XYBASIC and returns the user to the
resident operating system.

<control-C> Interrupts program execution, prints break message
and returns to direct mode.

<control-G> May be used only within quoted strings in PRINT
commands; prints as an audible bell or beep on most
console devices.

<control-H> Erases the last character typed and echoes <control-H>
to backspace the cursor on a CRT.

<control-O> Suppresses console output until next <control-O> or
until an error, an INPUT command or a return to direct
mode occurs.

<control-P> Echoes all output to the selected LST device until next
<control-P> typed.

<control-Q> Resumes execution suspended by <control-S>.

<control-R> Retypes the current input line.

<control-S> Suspends program execution until <control-S> or
<control-Q> typed.

<control-U> Deletes the current input line.

The following characters may be used during line editing in editing versions of
XYBASIC.

<return> Terminates editing and returns to direct mode.

<printable> Printable characters are inserted in the line at current
cursor position.

Page 176 XYBASIC Programming Manual

<rubout> Delete character left of cursor.

<control-B> [Boot] Exits from XYBASIC and returns to operating
system or monitor.

<control-C> Terminates editing and returns to direct mode, leaving
previous contents of line being edited unchanged.

<control-D> [Delete] Deletes character right of the cursor.

<control-E> [Edit] Enters the editor with contents of most recently
typed line.

<control-F> [Find] Moves cursor to right of next occurence of
<printable character> typed after <control-F>; echoes
<control-G> and leaves cursor unchanged if not found.

<control-G> [Bell] Inserts <control-G> (bell or beep) in line.

<control-H> [Backspace] Erases character left of cursor and echoes
<control-H> to backspace CRT cursor.

<control-K> [Kill] Kills all characters right of the cursor.

<control-L> [Left] Types the characters right of the cursor, followed
by <carriage return> and <linefeed>, and leaves cursor
at left of line.

<control-N> [Next] Finds next occurence of <printable character>
last specified in <control-F> search command; echoes
<control-G> and leaves cursor unchanged if not found.

<control-R> [Retype] Types characters right of cursor, <carriage
return> and <linefeed>, and retypes characters left of
cursor; cursor unchanged.

<control-T> [Type] Moves cursor one character right, echoing
character passed over.

<control-U> [Undo] Discards current contents of line being edited
and begins editing anew with original contents of line.

XYBASIC Programming Manual Page 177

Appendix 1: Initialization Dialog

When you load XYBASIC it leads you through the following dialog to obtain
information about your system.

XYBASIC {version} REV n.m
COPYRIGHT 1978, 1979, 1980 BY MARK WILLIAMS COMPANY, CHICAGO
WIDTH?
END OF MEMORY?
xxxxx BYTES FREE
OK

The first line indicates that you are using revision n.m of XYBASIC. The
indicated {version} may be CP/M or ISIS-II, with EDIT to indicate a version
including editing commands and DISK to indicate a version including CP/M
Disk commands,

The second line asks you the width of your terminal; XYBASIC uses this
information for formatting output. You should respond by typing a decimal
number (up to 255), followed by a <carriage return>. If you just type a <carriage
return> XYBASIC assumes a width of 80 columns.

The third line asks you how much memory you have in your system. You
should respond by typing in decimal the highest RAM memory address in your
computer system, followed by a <carriage return>. If you wish to reserve
memory for machine language routines, type the highest address you want
XYBASIC to use. If you just type <carriage return>, XYBASIC will find and use
the highest available memory address automatically. Under CP/M or ISIS-II this
information is obtained from the operating system.

The fourth line tells you how many bytes of memory remain free for program
and variable storage. You are then given the OK prompt which indicates that
you are talking to XYBASIC.

Page 178 XYBASIC Programming Manual

Appendix 2: Speed and Space Hints

For some purposes it makes little difference how fast a program runs, while for
others it is critical. The best way to make a program faster starts with a careful
consideration of how it works and elimination of unnecessary steps. For
example, a value computed within a FOR-loop which does not depend on the
value of the FOR variable can often be computed once (before the loop) instead
of many times (inside the loop).

In Extended XYBASIC integer arithmetic is faster than floating point arithmetic,
and integer variable storage uses less memory space than floating point variable
storage. When you know the value of a variable will always be an integer in the
range -32767 to 32767, you conserve both speed and space by using an integer
variable rather than a floating point variable. Similarly, execution of an integer
FOR-loop is much faster than execution of the corresponding floating point
FOR-loop. Since the subscripts of an array variable are always integers, you can
save considerable conversion time by using integer variables rather than
floating point variables in subscript formulas.

The execution speed of Extended XYBASIC programs which perform extensive
string manipulation often may be improved by allocating additional string
space. The extra string space lets XYBASIC require time-consuming garbage
collection less frequently, and the resulting time savings can be dramatic. You
can also save time by replacing a quoted string used repeatedly in string
relations (for example, "a" in IF S$ >="a" THEN...) with a reference to a string
variable set to the given value outside the loop containing the relation (for
example, A$ = "a" and IF S$ > A$ THEN...).

Since XYBASIC is an interpreter, it looks up each variable used in a command
every time the command is executed. The lookup procedure searches the
symbol table starting with the most recently defined variable. XYBASIC spends
a great deal of its execution time looking up variables, so rearranging programs
to facilitate variable lookup can produce substantial speed improvements.

Several techniques let you speed up a program at the expense of using more
memory space. Writing out a subroutine ’in-line’ instead of using GOSUB
makes the program longer, but saves the time used executing GOSUBs and
RETURNS. Replacing an array variable with several simple variables often
improves speed (since XYBASIC does not need to compute subscripts), although
it usually results in an incomprehensible program.

Using XYBASIC’s TRACE and BREAK commands for debugging also slows down
program execution. Usually the execution speed when TRACEing is limited by
the baud rate of the console; that is, XYBASIC waits for your console to print a
line number before executing the next command. By repeatedly typing <control-
O> to suspend and resume output, you can keep track of program execution
while wasting less time waiting for console printing. Similarly, using the many

XYBASIC Programming Manual Page 179

powerful optional forms of BREAK instead of TRACE often lets your program
run faster while you find bugs.

The ENABLE command slows down program execution a great deal, since the
specified condition is checked before each command is executed. To improve
program speed you should DISABLE interrupts whenever they are unnecessary,
and naturally you should avoid ENABLEing interrupts which you do not need.

If your computer does not have enough memory space to run a large XYBASIC
program, you may still find it possible to run it after you rewrite it to decrease
its memory usage. Just thinking carefully about a program often lets you save
space by eliminating extra steps, but sometimes you will need to know how
XYBASIC uses space. Some of the byte-saving techniques suggested below are
good programming practice, while others are recommended only if you must
conserve space at all costs.

Each line in a program has a fixed overhead, regardless of the number of
decimal digits in the line number. You cannot save space by using lower line
numbers, but you can conserve by using : and ’ to decrease the total number of
lines. Grouping related commands and comments on a single line also makes
programs more comprehensible.

XYBASIC stores each reserved word (command or function name) of a program
in a single byte, and stores every other character (including spaces) in a single
byte. You can therefore conserve space by using fewer characters, for example
by eliminating spaces, eliminating REMarks, eliminating LETs, and shortening
variable names. Each of these techniques usually makes your program harder
to read and debug, though.

Using XYBASIC’s full variety of commands and functions also lets you write
more compact programs. A repeated section of code can be made into a
subroutine and called with GOSUB. FOR-loops can replace some loops defined
with IF / THEN and GOTO. ON commands can replace sequences of IF / THEN
commands. Using the right function, for example TEST (I,2) instead of
RSHIFT(I,2) AND 1, also produces more efficient programs.

Besides the space used to store your program, XYBASIC uses free memory to
hold information about variables and control information about GOSUBs and
FORs. Each variable uses space, so you can save bytes by using the same
variable at different places in a program. Each GOSUB uses space until you
RETURN, so you must be careful to always RETURN from subroutines.
Similarly, each FOR uses space until NEXT exits from the loop, so you should
avoid GOTOing out of FOR loops. However, the space used is recovered if you
reenter the loop.

Page 180 XYBASIC Programming Manual

Appendix 3: Reserved Word List

ABS
AND
ASC [Extended]
ASSIGN
ATN [Extended]
AUTO [Editing]
BCD
BIN
BIN$
BREAK
CALL
CHR$
CLEAR
CLOSE [CP/M Disk]
CON#
CONT
COS [Extended]
DATA
DEF
DELAY
DELETE [Editing]
DIM
DIR [CP/M Disk]
DISABLE
EDIT [Editing]
EOF [CP/M Disk]
ENABLE
END
EXEC
EXP [Extended]
FIRST
FN
FOR
FRE
FRE$
FROM
GET
GET$ [Extended]
GOSUB
GOTO
HEX$
IF
IN
INPUT

INSTR [Extended]
INT [Extended]
IOBYTE
JOIN
LAST
LEFT$ [Extended]
LEN
LET
LINPUT [CP/M Disk]
LIST
LOAD
LOG [Extended]
LSBYTE
LSHIFT
LST#
MARGIN [CP/M Disk]
MID$ [Extended]
MOD
MOVE
MSBYTE
NEW
NEXT
NOT
NULL
OCT$
ON
OPEN [CP/M Disk]
OR
OUT
PEEK
POKE
POS
PRINT
PUN#
RANDOMIZE
RDR#
READ
REM
RENUM [Editing]
RESET
RESTORE
RETURN
RIGHT$ [Extended]
RND

ROTATE
RSHIFT
RUN
SAVE
SCALL
SCRATCH [CP/M Disk]
SENSE
SET
SGN
SIN [Extended]
SNG [Extended]
SPC
SQR [Extended]
STEP
STOP
STR [Extended]
STR$ [Extended]
TAB
TAN [Extended]
TEST
THEN
TIME
TO
TRACE
TRAP
UNBREAK
UNS
UNTRACE
UNTRAP
VAL [Extended]
WAIT
XOR

XYBASIC Programming Manual Page 181

Appendix 4: Character Set

XYBASIC lets you use any printable characters (ASCII codes 20 through 7E
hexadecimal -- see Appendix 5) in a program. In particular you can use both
upper and lower case alphabetic characters. Lower case characters are
converted to upper case automatically, except within quoted strings, DATA, and
REM commands. XYBASIC also recognizes some nonprintable (or control)
characters, namely:

<carriage return> Terminates current line

<rubout> Erases last character typed, echoing erased characters
within slashes (/)

<control-B> Exits from XYBASIC and returns to the operating
system or monitor

<control-C> Interrupts program execution and returns to direct
mode

<control-E> [Editing version] Enters editor with contents of most
recently typed line

<control-G> PRINTS as audible bell or beep when used in quoted
string

<control-H> Erases last character typed and echoes <control-H> to
backspace CRT cursor

<control-O> Suppresses console output until next <control-O>

<control-P> Echoes all output to the selected LST device until next
<control-P>

<control-Q> Resumes program execution after <control-S>

<control-R> Retypes the current line

<control-S> Suspends program execution until <control-Q> or
<control-S> typed

<control-U> Deletes the current line

In versions of XYBASIC which include editing commands (as described in
Chapter I, Section 13), the following control characters may be used during line
editing with the EDIT command.

Page 182 XYBASIC Programming Manual

<carriage return> Terminates editing and returns to direct mode

<rubout> Deletes character left of cursor, echoing deleted
character within slashes (/)

<control-B> Exits from XYBASIC and returns to the operating
system or monitor

<control-C> Terminates editing and returns to direct mode, leaving
previous contents of edited line unchanged

<control-D> Deletes character to the immediate right of cursor

<control-F> Moves cursor to the right of the next occurrence of the
following character typed

<control-G> Inserts <control-G> (bell or beep) at current cursor
position

<control-H> Erases character left of cursor and echoes <control-H>
to backspace CRT cursor

<control-K> Kills all characters to the right of cursor

<control-L> Types characters to the right of the cursor, followed by
<carriage return> and <linefeed>, and leaves cursor to
the left of first character

<control-N> Finds the next occurrence of the search character last
specified in a <control-F> search command

<control-R> Types the characters right of cursor, followed by
<carriage return> and <linefeed>, and then retypes the
characters left of cursor; cursor position unchanged

<control-T> Types the character right of cursor and moves cursor to
right

<control-U> Discards the current contents of the line being edited
and begins editing anew with original contents of line

All other nonprintable characters have no meaning to XYBASIC and are
ignored.

XYBASIC Programming Manual Page 183

Appendix 5: ASCII Character Equivalents

Like many other computers, the 8080 uses the ASCII (American Standard Code
for Information Interchange) code to communicate with peripheral devices. Bits
0 through 6 are used to represent 128 possible characters. Bit 7 is a parity bit;
its value may be 0 or 1, or it may be ignored, depending on the parity
conventions of a particular device. XYBASIC ignores bit 7 of any character it
receives. Appendix 4 details which characters XYBASIC accepts.

The 128 characters fall into four groups. Codes 0 through 31 (hex 0 through 1F)
represent control characters. Codes 32 through 63 (hex 20 through 3F)
represent special characters and digits. Codes 64 through 95 (hex 40 through
5F) include the upper case alphabetic characters. Finally, codes 96 through 127
(hex 60 through 7F) include the lower case alphabetic characters. The table
below gives the decimal, binary and hexadecimal values corresponding to each
ASCII character. Some consoles use other characters for a few values; for
example, NUL (ASCII O) is sometimes <control-shift-P> rather than <control-@>.

Decimal Binary Hex Character ASCII Mnemonic
0 0000 0000 00 <control-@> NUL
1 0000 0001 01 <control-A> SOH
2 0000 0010 02 <control-B> STX
3 0000 0011 03 <control-C> ETX
4 0000 0100 04 <control-D> ROT
5 0000 0101 05 <control-E> ENQ
6 0000 0110 06 <control-F> ACK
7 0000 0111 07 <control-G> BEL
8 0000 1000 08 <control-H> BS
9 0000 1001 09 <control-I> HT
10 0000 1010 0A <control-J> LF
11 0000 1011 0B <control-K> VT
12 0000 1100 0C <control-L> FF
13 0000 1101 0D <control-M> CR
14 0000 1110 0E <control-N> SO
15 0000 1111 0F <control-O> SI
16 0001 0000 10 <control-P> DLE
17 0001 0001 11 <control-Q> DC1
18 0001 0010 12 <control-R> DC2
19 0001 0011 13 <control-S> DC3
20 0001 0100 14 <control-T> DC4
21 0001 0101 15 <control-U> NAK
22 0001 0110 16 <control-V> SYN
23 0001 0111 17 <control-W> ETC
24 0001 1000 18 <control-X> CAN
25 0001 1001 19 <control-Y> EM
26 0001 1010 1A <control-Z> SUB
27 0001 1011 1B <control-[> ESC

Page 184 XYBASIC Programming Manual

28 0001 1100 1C <control-\> FS
29 0001 1101 1D <control-]> GS
30 0001 1110 1E <control-^> RS
31 0001 1111 1F <control-rubout> US

32 0010 0000 20 <space> SP
33 0010 0001 21 !
34 0010 0010 22 "
35 0010 0011 23 #
36 0010 0100 24 $
37 0010 0101 25 %
38 0010 0110 26 &
39 0010 0111 27 ’
40 0010 1000 28 (
41 0010 1001 29)
42 0010 1010 2A *
43 0010 1011 2B +
44 0010 1100 2C ,
45 0010 1101 2D -
46 0010 1110 2E .
47 0010 1111 2F /
48 0011 0000 30 0
49 0011 0001 31 1
50 0011 0010 32 2
51 0011 0011 33 3
52 0011 0100 34 4
53 0011 0101 35 5
54 0011 0110 36 6
55 0011 0111 37 7
56 0011 1000 38 8
57 0011 1001 39 9
58 0011 1010 3A :
59 0011 1011 3B ;
60 0011 1100 3C <
61 0011 1101 3D =
62 0011 1110 3E >
63 0011 1111 3F ?

64 0100 0000 40 @
65 0100 0001 41 A
66 0100 0010 42 B
67 0100 0011 43 C
68 0100 0100 44 D
69 0100 0101 45 E
70 0100 0110 46 F
71 0100 0111 47 G
72 0100 1000 48 H
73 0100 1001 49 I
74 0100 1010 4A J

XYBASIC Programming Manual Page 185

75 0100 1011 4B K
76 0100 1100 4C L
77 0100 1101 4D M
78 0100 1110 4E N
79 0100 1111 4F O
80 0101 0000 50 P
81 0101 0001 51 Q
82 0101 0010 52 R
83 0101 0011 53 S
84 0101 0100 54 T
85 0101 0101 55 U
86 0101 0110 56 V
87 0101 0111 57 W
88 0101 1000 58 X
89 0101 1001 59 Y
90 0101 1010 5A Z
91 0101 1011 5B [
92 0101 1100 5C \
93 0101 1101 5D]
94 0101 1110 5E ^
95 0101 1111 5F _

96 0110 0000 60 ‘
97 0110 0001 61 a
98 0110 0010 62 b
99 0110 0011 63 c
100 0110 0100 64 d
101 0110 0101 65 e
102 0110 0110 66 f
103 0110 0111 67 g
104 0110 1000 68 h
105 0110 1001 69 i
106 0110 1010 6A j
107 0110 1011 6B k
108 0110 1100 6C l
109 0110 1101 6D m
110 0110 1110 6E n
111 0110 1111 6F o
112 0111 0000 70 p
113 0111 0001 71 q
114 0111 0010 72 r
115 0111 0011 73 s
116 0111 0100 74 t
117 0111 0101 75 u
118 0111 0110 76 v
119 0111 0111 77 w
120 0111 1000 78 x
121 0111 1001 79 y
122 0111 1010 7A z

Page 186 XYBASIC Programming Manual

123 0111 1011 7B {
124 0111 1100 7C |
125 0111 1101 7D }
126 0111 1110 7E ~
127 0111 1111 7F <rubout> DEL

XYBASIC Programming Manual Page 187

INDEX

[INDEX not reproduced in online version of manual.]

Page 188 XYBASIC Programming Manual

USER REACTION REPORT

To keep this manual and XYBASIC free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in the
appropriate sections below, detach and mail to:

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Thank you.

- -

Name :

Company:

Address:

Phone:

Date:

XYBASIC version and revision used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in XYBASIC’?

Can you suggest any improvements or enhancements to XYBASIC?

Additional comments:

