A HIGHER LEVEL LANGUAGE
FOR 8008/8080 SYSTEMS

v SCELEBE (OMPUTER
G CONSULTING INC.

SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

BY

Mark Arnold
and
Nat Wadsworth

Copyright 1976
SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road
Milford, CT. 06460

- ALL RIGHTS RESERVED -

IMPORTANT NOTICE

Other than using the information detailed herein on the purchaser’s individual
computer system, no part of this publication may be reproduced, transmitted,
stored in a retrieval system, or otherwise duplicated in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior express written consent of the copyright owner.

The information in this publication has been carefully reviewed and is believed
to be entirely reliable. However, no responsibility is assumed for inaccuracies
or for the success or failure of various applications to which the information
herein might be applied.

The authors wish to thank the following members of the staff
at Scelbi Computer Consulting, Inc., for their dedicated assis-
tance in the preparation of this publication:

Robert Findley
Raymond Edwards
Ms. Gabrielle Tingley

SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

3k o sk ok ok sk ok ok sk kK sk sk sk stk skl skosk sk sk skok skokokesk skok skokoksksk ko

TABLE OF CONTENTS

s sk s sfe sfe sk sk sk sk Sk sk skosk sk ske skeoske sk sk skl skok skeoskoskeoskoskoskoskoskoskok skokeok

Introduction
Chapter ONE Interpreter Versus Compiler
Chapter TWO The Fundamental Capabilities of SCELBAL
Chapter THREE Fundamental Operation of SCELBAL
Chapter FOUR The Executive
Chapter FIVE The Main Syntax Routine
Chapter SIX Statement Interpretation
Chapter SEVEN Evaluating Mathematical Fxpressions
Chapter EIGHT The Parser Routine
Chapter NINE Function and Optional Array Handling Routines
Chapter TEN Mathematical Routines
Chapter ELEVEN 1/0 Routines
Chapter TWELVE SCELBAL Assembled for Operation
on an 8008 System
Chapter THIRTEEN SCELBAL Assembled for Operation
on an 8080 System
Chapter FOURTEEN Operating SCELBAL
Chapter FIFTEEN Suggestions for Program Tinkerers

Appendix I SCELBAL Labels Reference List

NOTES

In the assembled listings the contents of address locations 01 272 through 01 303 as presented on
page 4 in chapters 12 and 13 should be changed to contain the following data.

01272 004
01 273 323
01274 301
01275 326
01 276 305
01277 004
01 300 314
01 301 317
01 302 301
01 303 304

(cc) for SAVE
S
A
\Y%
E
(cc) for LOAD

O»Oor

These locations were incorrectly identified in the listing as being part of the Arithmetic Stack and a
temporary storage location for the FPACC. Failure to make the above corrections in the listings
will result in the program being unable to correctly respond to a SAVE or LOAD executive com-

mand directive.

PATCHNR. 1

The following patch is recommended to correct a
condition in the floating point addition subroutine.
If the patch is not installed, small mathematical errors
may be introduced into calculations {in the order of
10 to the minus seventh power) under certain condi-
tions. These errors are caused by residue left in the
FPOP (Floating Point OPerand) extension byte. The
patch clears the FPOP extension byte when it is used
by the portion of the FPADD subroutine laheled
SHACOP.

To correct the source listing make a note in
chapter ten on page 6 that two instructions:

LLI 133
LMI 000

should be inserted between the second and third lines
of the subroutine labeled SHACOP.

To implement the correction for the assembled
listings of the program provided, it is recommended
that the first two instructions of the subroutine
labeled SHACOP be changed to read:

SHACOP, CAL PATCH1
LAA

PATCH1 may be inserted starting at location 000
on page 30 in the assembled versions. Making this
change to direct the program to the patch would
result in the 8008 listing shown on page 48 of chapter

12 in the vicinity of the label SHACOP to appear as:

20 341 106 000030 SHACOP, CAL PATCH1
20 344 300 LAA

Similarly, the 8080 version listing on page 48 of chap-
ter 13 would appear as:

20 341 315000030 SHACOP, CALPATCH1
20 344 177 LAA

The actual PATCH1 subroutine would need to
contain the two instructions replaced by the calling
sequence as well as the two instructions being added.
The unused bytes starting at location 000 on page 30
(in the program listing) as shown for the 8008 version
on page 68 of chapter 12 would appear as:

30 000 066 123 PATCHI1, LLI123

30 002 076 000 LMI 000
30 004 066133 LLI133
30 006 076 000 LMI 000
30 010 007 RET

While the 8080 version (page 68 of chapter 13) would
appear as:

30 000 056 123 PATCH1, LLI123

30 002 066 000 LMI 000
30 004 056 133 LLI133
30 006 066 000 LMI 000
30010 311 RET

NOTES

PATCH NR. 2 - Revised

The implementation of PATCH NR. 1 will cause
a problem to occur in the square root function sub-
routine if the following PATCH NR. 2 is not also in-
stalled. This is because the square root routine init-

ially only tested for convergence by examining the *

size of the exponent involved. The increased accur-
acy that results when PATCH NR. | is implemented
can cause certain values to converge to zero as the
square root is calculated. PATCH NR. 2 inserts an
additional test for the zero condition in that sub-
routine. Failure to implement this patch when the
first patch has been implemented can result in the
square root function subroutine “hanging up” in
an endless loop when an attempt is made to take the
square root of a number such as 1.0 or 4.0! The fol-
lowing patch corrects for this possibility.

To correct the source listing make a note in
chapter nine on page 11 that the following instruc-
tions:

DCL
LAM
NDA
JTZ SQRCNV

should be inserted between the 16th and 17th lines
from the top of that page between the instructions:

JTS SQRCNV
and
LLI 034

To implement the correction for the assembled
listings of the program provided, it is recommended
that a patch be made by changing the JTS SQRCNV
instruction which starts at address 32 163 to the in-
struction JMP PATCH2 and adding a label SQR1 to
the LLI 034 instruction which is at location 32 166.
The actual patching instructions may be placed
starting at address 32 364 and would consist of the

sequence:

PATCH2, JTSSQRCNV
DCL
LAM
NDA
JTZ SQRCNV
JMP SQR1

Implementing the patch in this recommended
fashion would result in the 8008 version (chapter 12
page 75) being altered at the following addresses to
appear as:

32163 104 364 032
32166 066034

JMP PATCH2
SQR1, LLI O34

at the patch to appear as:

32 364 160 203 032 PATCH2, JTS SQRCNV

32 367 061 DCL
32370 307 LAM
32371 240 NDA

32 372 150 203 032
32375 104 166 032

JTZ SQRCNV
JMP SQR1

Similarly, for the 8080 version (chapter 13 on
page 75) the patch would result in the following loca-
tions being changed to:

32163 303 364 032
32166 056 034

JMP PATCH2
SQR1, LLI034

and the patch locations to appear as:

32 364 372203 032 PATCHZ2, JTS SQRCNV

32 367 055 DCL

32 370 176 LAM

32 371 247 NDA

32 372 312203032 JTZ SQRCNV
32 375 303166 032 JMP SQR1

In the source listing, on page 13 of chapter 10, change the first three instructions in the

routine labeled DVEXIT to appear as follows:

DVEXIT, LLI143
LEI 123
LBI 004

Change the corresponding section of the assembled listing for the 8008 version on page 52 of

chapter 12 to read:

22 070 066 143
22 072 046 123
22 074 016 004

DVEXIT, LLI143
LEI 123
LBI 004

And the 8080 version on page 52 of chapter 13 to read:

22 070 056 143
22 072 036123
22 074 006 004

DVEXIT, LLI143
LEI 123
LBI 004

This revision will correct a residue problem which can cause incorrect results to occur when a
number with a negative exponent is divided into the value zero.

NOTES

patch3
PATCH #3
011_307 066 201 PATCH3: LLI 201
011_311 056 027 LHI 027
011_313 076 00D LMI 000
011_315 104 266 010 JMP EXEC
012_354 104 307 011 IMP PATCH3
026_360 033 _bB 033

011_027 076 000 LMI 000

INTRODUCTION

In the early 1970’s technology produced
the integrated circuit microprocessor. The
advent of this device offered the promise of
making low cost computing elements avail-
able to the general public at large and raised
the hopes of many citizens that the power of
the computer could finally be accessed by in-
dividuals of limited means. This promise was
most exciting for in the past the use of com-
puters had been fairly limited, for economic
reasons, to institutions that could afford the
use of their incredible power.

For the first several years after their intro-
duction, microprocessors remained primarily
in the domain of highly educated scientist
and engineers who were backed by organi-
zations equipped to exploit the device’s
capabilities in a variety of fields. Gradually,
however, as knowledge spread, their capa-
bilities became known to the general public.
People, many of them electronic enthusiasts
and hobbyists, wanting to harness the power
of these devices for personal use began to
clamor for low cost computing systems. The
old laws of supply and demand came into
effect. Within a short time span, a number of
small corporations began to offer the hard-
ware for small personalized systems. Initial-
ly, only individuals with appropriate techni-
cal backgrounds were able to capitalize on the
availability of these low cost systems and put
them to effective use. Some people, enthral-
led by the exciting potential of such systems,
had some rude awakenings. For, while the
microprocessor is touted as being able to do
any and everything, it turns out that these
little devices are virtually worthless without
SOFTWARE or PROGRAMS that can direct
their activities. The development of useful
software using early machine language tech-
niques is no trivial task. It takes a consider-
able amount of individual effort to get to the
point where one can program a computer
using the most fundamental programming
method, which is machine or assembly lan-
guage programming. These programming
methods require an intimate knowledge of

the detailed operation of a computer on a
step-by-step basis. The development of even
seemingly simple tasks using these program-
ming methods can take an inordinate amount
of time. This is particularly so if one is
not skilled in the art and practice.

The limitations of machine language
programming have been known for many
years since the beginnings of computer
technology some 30 years ago. Over the
years a number of HIGHER LEVEL
LANGUAGES have been developed so
that people other than computer experts
could work effectively with computers.
Higher level language programs are actually
programs written in machine or assembler
language by skilled personnel! that will in
turn allow other people to communicate
with the computer using simple commands
and statements. The degree of programming
efficiency that may be achieved using a
higher level language is many orders of mag-
nitude over that required to perform the
same tasks using the fundamental machine
language programming methods. For in-
stance, a simple directive such as:

LET X = (Y + 145*%Z) t (2*N - M)
might require several THOUSAND individual
machine language instructions to achieve a
general solution capability. A person who had
many such equations to solve would soon opt
to forget the use of a computer if such a task
had to be performed for each variation of
similar problems. It may be apparent, how-
ever, that such equations, while individually
different in detail, consist of similar opera-
tions (such as multiply, add, raise to a power
and so forth). A higher level language is de-
signed to take advantage of such similarities
in a generalized fashion.

On the other hand, while a higher level
language yields such tremendous increases
in programming efficiency, this increase is
not achieved without sacrifice! It takes many

thousands of man hours to develop such a
generalized higher level language, and this
investment in labor must be made each time
such a language is created. It is not always
easy to get a group of people together and
make the type of investment necessary to
initially develop such a language. Addition-
ally, the individual user who desires to in-
stall such a language on a computer, must
pay for the increased programming effic-
iency by budgeting a significant amount of
the available memory in the computer for
the exclusive use of the operating portion
of the higher level language program. What
is left over may then be used to hold the
user’s program (in the higher level language
form) along with any data that is to be
manipulated or processed. For the small
system user, the “significant” amount of
memory set aside for the operating portion
of the higher level language, for the program
described herein, will be some six to seven
thousand bytes of memory. This is indeed
a good chunk of memory for the system
owner who has but 8 K of that precious
commodity!

The individual user must also sacrifice
certain aspects of a computer’s capability
when utilizing a higher level language. For
instance, it is virtually impossible to pro-
gram real-time routines whose precise exe-
cution times can be controlled when using
the higher level syntax. This is because the
higher level syntax does not give the pro-
grammer access to individual machine lan-
guage instructions. Additionally, many types
of instructions available in machine language
(for instance, rotating a register to the right
or to the left) have no direct counter-part in
the higher level language. (However, the
student of this publication will be in a posi-
tion to incorporate subroutines that can be
accessed by higher level language programs
and can thus enjoy the benefits of both types
of programming!)

Despite the relatively large memory re-
quirements of a high level language, and the
other types of limitations mentioned, it is
felt that the time has arrived when such a

language would be welcomed by small sys-
tems owners when presented in the detailed
manner of this publication.

The higher level language to be presented in
this publication has been given the acronym
SCELBAL. This stands for SCientific ELe-
mentary BAsic Language. It has been patter-
ned after a commonly used higher level
language referred to as BASIC.

SCELBAL was specifically developed to be
able to run on systems using the ubiquitous
8008 CPU. This CPU is generally acknow-
ledged as being the first true 8-bit CPU to be
manufactured on an integrated circuit. It was
first developed by a California based firm,
Intel Corporation. SCELBAL is believed to be
the first such higher level language to be
specifically developed to run on the 8008
CPU and be made generally available to the
public. The program described herein can also
be run on systems using the more powerful
8080 CPU though it is not as memory effi-
cient as it could have been if the program had
forsaken 8008 capability.

While this publication was specifically
prepared to demonstrate the details of the
language as developed for 8008/8080
machines, the publication should be of
considerable interest to users of other types
of similar computing devices. Indeed, the
experienced programmer, armed with the
knowledge presented in this book, should be
in a pretty good position to implement a
similar language on just about any other
microprocessor by simply translating the
machine code instructions to those of the
machine of particular interest to the user.
(While such a project might seem monumental
to some, the information in this book would
make the task considerably less difficult than
approaching such a task without the practical,
detailed information which is presented
herein')

The major objectives of this publication
are to:

1.) Present a higher level language that can

be implemented on 8008/8080 microproces-
sor systems with the user having the freedom
to adapt the package to various individual
I/O configurations.

2.) Present the intimate details of its opera-
tion so that it may be readily modified and
adapted to individual user’s applications and
Yequirements.

3.) Serve as an educational and stimula-
tive tool for the future development of simi-
lar languages, possibly of a more advanced
nature.

Much thought in the preparation of the
overall program went into just what capa-
bilities to provide given the various techni-
cal trade-offs that one must consider. It

was known at the start that the program
could not be developed to satisfy every
potential user. Nobody has a system with that
much memory available! Care was taken to
provide a good fundamental selection of
syntax statements and functions in the
language. From that point, backed by the
descriptions of the program’s organization,
general flow charts, and highly commented
listings provided in this publication, it is
felt that the user will be equipped to add
extended capabilites depending on mem-
ory available, or willingness to sacrifice
described functions. For many users, it is
felt that the program as presented, will be
entirely satisfactory. The extra measure of
providing the information so that the user
may go further if desired, is the fundamental
premise behind this publication.

INTERPRETER VERSUS COMPILER

SCELBAL was developed as an INTER-
PRETIVE language, not a compiler. Some
readers might be asking, ‘“What’s the diffe-
rence?”

There is a lot of difference. An interpre-
tive language is one that essentially proces-
ses each line or statement in the source
code of the higher level syntax and then
executes the directive before going on to
the next line or statement. It does this by
calling on machine language routines that
perform the various functions as soon as
it has been determined which job is to be
accomplished. A compiler operates quite
differently. Each time it processes a state-
ment in the higher level language syntax
it PRODUCES some machine language
coding that can later be executed to per-
form the desired task.

From this brief introduction it may be
apparent that there are some major organi-
zational differences between the two types
of higher level language processors. The key
ingredient is that the INTERPRETER im-
mediately interprets and executes. The
compiler COMPILES, that is it produces
machine code, and the machine code it
produces is executed at a later stage.

What does this mean from an organi-
zational and systems view point? Perhaps
the best way to obtain the overall view is
to present the typical practical operation
of both types of systems.

COMPILER OPERATION

The general sequence of operations to
get a program written in a higher level
language into actual operation using a
compiler oriented language is as follows.

First, a program written in the higher
level language syntax is prepared. This
might be done using an Editor program

on the computer. Note that if such is the
case, that first an Editor program must be
loaded into the computer’s memory and
the computer system used for editing pur-
poses. When the high level language source
listing has been prepared, it must usually

be saved or stored on some external
medium such as punched paper tape
or magnetic tape.

Next the COMPILE portion of the
higher level compiler program would be
loaded into the system’s memory and
the original source listing of the high
level language program processed. Gene-

rally this procedure requires several passes
or readings of the source listing. The final
result of this operation is the production
of machine language code, which once
again would usually have to be stored on
some sort of external medium.

Finally, the RUN or EXECUTE por-
tion of the compiler program would be
loaded into the system’s memory along
with the machine language code that was
produced previously by the COMPILE
portion of the compiler. At this point,
the wuser’s program, originally written
in the higher level syntax, would be ready
to operate, having been converted to
machine code.

The first two stages of a compiler
oriented language can be considered as
analogous to the sequence of operations
necessary to create a program using an
Editor and Assembler. The only difference
being that the source listing when using an
assembler would consist of the machine lan-
guage mnemonics, while when using a com-
piler it would consist of the higher level
language syntax.

The final stage of a compiler oriented
language is generally not quite the same
as would be the case if machine code was
produced by an assembler. This is because

the run or execute portion of the compiler
typically provides some control over the com-
piled program by the operator. Additionally,
this portion of the compiler program has a
number of routines that the program that has
been compiled is able to utilize, such as, a
floating point arithmetic package. At this
point, when the RUN portion of the com-
piler along with the machine code produced
by the COMPILE portion are both residing
in memory, the user is finally able to execute
the original program that was written using
the higher level syntax.

It may now be apparent that a compiler
oriented language is highly dependent on the
host system having fast and reliable IO capa-
bility with an external bulk memory device.
This is because of the constant need to input
the various sections of the compiler program
and output the intermediate information
during the program development process.
This requirement for the constant use of an
external memory medium may be observed
more clearly by reviewing the development
process for a higher level language, going from
the creation of the high level source listing to
final execution of the high level program, as
illustrated in the following diagrams.

EDITOR
PROGRAM
INPUT L - =
Editor program TEXT
first loaded into BUFFER

memory and the
high level source
listing produced.

e

OUTPUT
High level source
listing then stored
on external bulk
memory medium.

COMPILER OPERATION - STEP 1

COMPILE
———ee R .
portion of
INPUT the
Load COMPILE
section of the COMPILER
compiler pro- PROGRAM
gram into mem-
ory.
—_—
— OUTPUT
> Store machine
INPUT language object
Pass high level code produced
source listing [~ ™ 77 771 by compiler on
through compil- Symbol external bulk
er several times. Table memory device.

COMPILER OPERATION - STEP 2

FLOATING
INPUT POINT
Load RUN PACKAGE
TIME section | = T = 7
of the com- 1/0
piler program ROUTINES
into memory. - 3
OUTPUT

RUN TIME Display results

—e p—
ROUTINES of user’s origi-
INPUT .
. L e o nal high level
Load machine
) program.
language ob- R
ject code pro- USER’S
duced by the COMPILED
compiler. PROGRAM

COMPILER OPERATION - STEP 3

The fact that a compiler oriented version
of a high level language is so dependent on
I/O operations with an external bulk
device is the primary reason that SCELBAL
was not developed as a compiler. Most small
system owners must be satisfied with either
paper tape or audio cassette magnetic tape
bulk storage devices. Both of these types of

peripherals are relatively slow in operation
and not as reliable as commercially oriented
magnetic tape systems. For convenient
compiler operations a system really needs a
disc peripheral unit that will allow the rapid
loading of programs and storage of inter-
mediate data (such as the object code pro-
duced during the second step of compiler
operations discussed above). It could take as
much time as an hour or more to attempt to
compile a higher level language program
on a small system equipped with slow peri-
pherals. The task of operating a compiler
would quickly become quite frustrating if the
programmer was a novice and frequently
made programming errors in the source
syntax. Remember, for the system just
described, that if a program error was not
detected until compiler RUN TIME, the user
would have to go all the way back to the first
step of loading an Editor program back into
the computer and correcting the source listing
of the high level language program!

As a matter of interest, if a compiler is so
much trouble to use, what good is a higher
level language that utilizes the method? Well,
first of all, a compiler is not so difficult to use
if one has a computer system equipped with a
disc or other high speed memory peripherals.
With such equipment it takes just a few
seconds to load in a program or save the
results of intermediate operations. Remem-
ber, the choice was made to not use the
compiler method for SCELBAL based on the
consideration that most small system owners
could not afford the luxery of such speedy
peripherals. There are, of course, institutions
and organizations that do have such capabili-
ties. For them, a compiler oriented system
can have advantages.

A few advantages of using a compiler are as
follows.

As a general rule of thumb, a compiler
program can be created to operate in less
actual read and write memory in the com-
puter than an interpretive version. This is
almost self-evident from the presentation of
the information that a compiler is generally

split into several portions, the COMPILE part,
and the RUN or EXECUTE portion. Thus,
had SCELBAL been developed as a compiler
it might have been possible to provide the
same capabilities (from the final results
view point of having a program executed that
was originally written in a higher level syntax)
with a program that only required, say, 4 K of
RAM memory in the computer at any one
time.

Second, the final operating version of the
higher level program will generally function at
a considerably faster speed than the same
program executed in an interpretive fashion.
This too is easy to see since one now knows
that the interpreter must examine and inter-
pret each statement as it goes along, whereas
the compiled version had already accom-
plished that task when it produced the
machine code that will result in the desired
functions being performed at program exe-
cution time. This final speed of the program
may be important when massive amounts of
calculations are being performed, or in
real-time situations. It is not likely to be that
critical when a small system (that is probably
severely restricted by I/O timing considera-
tions) is being utilized.

Third, in line with what has already been
mentioned about a compiler oriented program
requiring less actual memory in the computer,
the final machine code version of the program
that has been compiled will generally be much
more efficient memory usage-wise. This again
is pretty much self-evident when one con-
siders that the compiled program will only
have machine language routines that per-
form the specific functions asked for in the
actual program that was compiled. The
interpretive package, on the other hand, must
have all the possible functions for the lan-
guage available in memory, since it is not
known which functions may be utilized by a
particular program.

In summary, it might be stated that a
compiler becomes much more attractive when
viewed in the context of larger computing
systems with high speed peripherals available.

From the microprocessor view point, com-
piler oriented higher level languages, imple-
mented on larger machines, are quite valuable
if one is interested in developing a relatively
large number of programs that will operate in
microprocessor systems when they are part of
a product. For instance, a manufacturer that
desired to produce a line of test instruments,
each of which would utilize a microprocessor,
but with a special software package for
each type of instrument, would be well off to
use a compiler to create the programs. Com-
pilers operating on microprocessor systems
themselves, however, for the reasons indi-
cated, are simply not practical for most small
system users.

INTERPRETER OPERATION

An interpretive version of a higher level
language, while not as memory efficient as a
compiler, is much convenient for the small
systems user. In the context of being able to
prepare and execute many different kinds of
programs in a short time span, it is much
more efficient in terms of overall program
development to execution time. This is
particularly true for inexperienced program-
mers as they can almost instantaneously be
notified of syntax errors and immediately
make corrections to the program being
created on an on-line, real-time basis.

An interpreter differs from a compiler, as
mentioned previously, in the fact that each
line of the source syntax is interpreted and
then executed before going on to the next
line. The execution is performed by calling
on various routines provided as part of the
interpreter package. There is no production
of intermediate machine code as in the sense
of the compiler (though there may be the pro-
duction of intermediate data, symbols, etc.).

An interpreter such as SCELBAL has every-
thing required to create and execute a pro-
gram residing in memory at one time. Thus,
once the interpreter program itself has been
loaded into memory, there is no need to use
external bulk memory devices (unless one

wants to save a higher level program, or re-
store one previously saved on such an external
memory storage device). This eliminates all
the critical bulk memory operations necessary
for the successful development of such pro-
grams when using a compiler.

The following diagram illustrates a memory
map view of a typical interpreter program.

FLOATING
INPUT ’ POINT
Load INTER- _PﬁC_KA_(jI:J-—
PRETER pro-
gram into the 1/0
computer. ROUTINES
EDITOR
D ——— and
INPUT EXECUTIVE
Enter program | — — —— —o
using - key- INTER-
board device. PRETER
OPERATING
ROUTINES
= = — OUTPUT
PROGRAM Display results
BUFFER of the high
level program
VAR?IXELES immediately.
STORAGE

INTERPRETER OPERATION

The diagram above illustrates that the in-
terpretive oriented program really consists of
an Editor program (to enter and edit the high
level syntax into a program buffer), an Exe-
cutive (to direct the operation of the various
portions of the package as directed by the
user), and an Interpretive/Operating section
that is able to analyze the contents of the
program buffer and call on the desired
routines as indicated by the statements it
interprets.

With this type of arrangement one can typi-

cally create and execute higher level language
programs in seconds or minutes versus an
hour or two.

Thus, SCELBAL was developed to operate

as an INTERPRETER. The details of its
operation will be presented in this manual. To
find out the fundamental capabilites of
SCELBAL just continue reading into the
next chapter.

THE FUNDAMENTAL CAPABILITIES OF SCELBAL

As explained in Chapter One, SCELBAL
was developed to operate in an INTERPRE-
TIVE mode. This means that the entire
program resides in memory at one time
along with the program written in the higher
level language that is to be executed. When
the INTERPRETER is given the RUN com-
mand it immediately proceeds to INTER-
PRET each line of the higher level language
program and perform the necessary calcu-
lations and functions.

SCELBAL has actually been designed so
that it may operate in a ‘“calculator’”” mode
or operate in a stored program mode. In the
calculator mode, each statement is executed
immediately after it is entered on the input
device. In this mode, the program is ideal
for solving simple formulas when the user
only needs to obtain a few values.

For instance, if one typed in the state-
ment:

PRINT 2*2 + 3*3 +4%4
the value:
29

would be displayed as soon as the end of line
code (carriage-return) was issued at the end of
the PRINT statement.

One may use the calculator mode to solve
more complex problems. For instance, if one
entered a series of statements such as:

LET A=2
LET B=3
LET C=4

and then entered:

PRINT A*A + B*B+ C*C

the answer:
29

would immediately be displayed. This is
because, in the calculator mode, the values
assigned to A, B and C would be immed-
iately assigned and available for use in
solving the formula given in the PRINT
statement above.

When it is not desired to operate in the
calculator mode, but rather in a stored
program mode, the user simply inserts a
line number in front of each statement.
A whole series of statements may then be
arranged to form a program. When it is
desired to execute the steps in the pro-
gram, a special executive RUN command is
issued. This command will cause the INTER-
PRETER to proceed to execute the program
one statement at a time.

SCELBAL is able to handle actual num-
eric values using a floating point package
which is an integral part of the interpreter.
While a floating point package is used to
perform all calculations, inputs and out-
puts to the program may be in fixed for-
mat within certain ranges.

When inputting information or speci-
fying values within a program, the user may
use fixed point notation for numbers in the
range plus or minus 0.999999 to 999999.
Numbers smaller or greater than this must
be stated in floating point format, such as:

+0.123456E-10
or
-654321E+12

The minimum and maximum powers that

the floating point package used in SCELBAL
can handle is ten to the plus or minus thirty-
eighth.

SCELBAL automatically outputs numbers
in the range plus or minus 1.0 to approxi-
mately 999999 in fixed point format. Out-
side this range, output automatically switches
to floating point notation.

The floating point package itself provides
SCELBAL with the four most fundamental
arithmetic capabilities. They are addition,
subtraction, multiplication and division. All
calculations in the floating point package are
maintained to twenty-three significant binary
bits in the mantissa, with the multiplication
and division routines providing binary round-
ing when calculations yield numbers that ex-
ceed twenty-three binary bits.

While the floating point package provides
the essential capability to handle the opera-
tors: +, -, * (multiply) and / (divide}, the
language, using supplementary routines, can
also recognize the operators ¢ (raise to a
powerj, and parenthesis “(” and *)” which
may be used to group or nest mathematical
statements.

Up to twenty user defined variables are
permitted at one time when using the lan-
guage. However, in order to conserve mem-
ory space, variables must be limited to a
maximum of two characters. Variables must
begin with a letter of the alphabet.

The Executive portion of SCELBAL allows
the user to control the overall operation
of the program from an I/O device such
as a keyboard and teleprinter. The user
can create a program in the higher level
language and have it executed using the
features of the Executive portion of the
program. A portion of the Executive is
actually a small Editor program that allows
the user to ‘“edit” the information (pro-
gram) in the program buffer at any time.
Lines may be deleted and new lines enter-
ed. Clerical errors on a line may be cor-
rected. Furthermore, a portion of the

Executive checks for various types of syntax
errors as each line is entered. If
an error is detected, an error code message
is presented to the operator. This feature
is extremely valuable for novice program-
mers, (and though some of them might not
admit it, is quite comforting to the old pro-
fessionals as well).

The Exective portion of SCELBAL has
five major commands available to the opera-
tor which are defined and explained breifly
below.

SCR is used to indicate the SCRATCH
command. This command effectively clears
out any previous program stored in the pro-
gram buffer along with any previous user
defined variables. It is used in preparation
for entering a new high level program into
the program storage area.

The LIST command does just that! It
causes the contents of the program buffer
to be displaved or “listed” on the system’s
output device so that it may be reviewed
by the operator.

RUN directs the interpreter to begin
operations and execute the program stored
in the program buffer.

SAVE. This command may be used to
direct the program to save a copy of the pro-
gram stored in the program buffer on the sys-
tem’s external bulk storage device. A program
saved using this command can later be re-
stored for further use by using the command
presented next.

LOAD. This command directs the program
to read in a copy of a program from an exter-
nal bulk storage device (previously written
thereon using the above SAVE command}) in-
to the program buffer so that it may be
executed by the interpreter.

The higher level language SCELBAL con-
sists of STATEMENTS that are interpreted by
the program resulting in selected operations
being performed. SCELBAL recognizes the

following types of statements.

The REM for REMarks statement indicates
a comment which is to be ignored as far as the
interpreter is concerned. Information on a
line prefaced by a REM statement is intended
only for the use of programmers and may be
used to document a program.

The LET statement is used to set a variable
equal to a numerical value, another variable,
or an expression. For instance, the statement:

LET X = (Y*Y + 2*¥Y - 5)*(Z + 3)

would mean that the variable X was to be
given the value of the expression on the right
hand side of the equal sign.

Since the LET statement is such a frequen-
tly used directive, SCELBAL also recognizes
an implied LET statement. Thus, the simple
statement:

X = (Y*Y + 2%Y - 5)%(Z + 3)

would be interpreted as though the LET
directive had been stated.

The IF combined with the THEN state-
ment allows the higher level program to make
decisions. SCELBAL will allow one or two
conditions to be expressed in an IF....THEN
statement. Thus, the statement:

IF X = Y THEN LL
would be interpreted to mean that if, and
only if, X is equal to Y, then the program
would branch to line number LL in the pro-
gram.

While the directive:

IF X <= Y THEN LL
would mean that if X was less than OR equal
to Y (two conditions), that the program was

to go to line number LL.

Similarly, the statement:

IF X<>Y THEN LL

would mean that if X was less than OR great-
er than Y that the program was to branch
(again two conditions).

If the condition(s) in an IF...THEN state-
ment are not met, then the program contin-
ues by going directly to the next sequential
statement in the program and does not exe-
cute the branch directive.

The GOTO statement directs the program
to effectively JUMP to a specified line num-
ber in a program. The GOTO statement may
be used to skip over a block of instructions
in a multiple segment or subroutined pro-
gram.

The FOR, NEXT and STEP statements
provide capability for the programmer to
form program loops. For example, the series
of statements:

FOR X =1 TO 10
LET Z = X*X+ 2*¥X +5
NEXT X

would result in Z being calculated for all
the integer values of X from 1 to 10. While
SCELBAL does not require the insertion
of a STEP directive in a FOR - NEXT loop,
a STEP value may be defined if desired.
The implied STEP value if not specifically
stated is always 1. However, it may be set
to a value other than 1 by following the
FOR range statement by a STEP directive
that dictates the desired STEP size. Thus,
the statement line:

FOR X = 1 TO 10 STEP 2

would result in X assuming values of 1, 3,
5, 7 and 9 as the FOR - NEXT loop was
traversed.

GOSUB is a statement that is used to
direct the program to perform another
statement or group of statements as a
subroutine. The statement is used in con-
junction with a line number which desig-

nates where subroutine execution is to

begin.

A RETURN statement is used to indi-
cate the end of a subroutine. When a
RETURN statement is encountered, the
program will return to the next statement
immediately following the GOSUB direc-
tive which was used to call the subroutine.

SCELBAL permits multiple nesting of
subroutines (up to eight levels) within a
program.

INPUT is used to direct the interpreter
to wait for an operator to INPUT informa-
tion to the program. After the information
has been received operation of the program
automatically continues.

The PRINT statement is used to output
information from a program. By using the
PRINT statement the user may direct the
program to display the values of variables,
expressions, or other types of information
such as messages. The PRINT statement in
SCELBAL permits mixed types of output
on the same line (numerical vaiues and alpha-
numeric messages), and the option of provid-
ing a carriagereturn and line-feed after out-
putting information or the suppression of
that function. For instance, the statement:

PRINT ‘X ISEQUAL TO: "X

would result in the program first printing the
text message “X IS EQUAL TO: ” and then
the value of the variable X on the same line.
After the value of the variable X had been
displayed a carriage-return and line-feed com-
bination would be issued. To suppress the is-
suing of the CR & LF function in the above
example, the programmer would only need to
include another semicolon at the end of the
statement!

The PRINT statement is augmented by
several functions and features. For instance,
a comma sign in a PRINT statement may be
used to cause the display device to space over
to the next TAB position before continuing

to output more data. A special TAB function
that will be discussed later may also be used
with the PRINT statement to format the out-
putting of data. And, another special function
which will be presented shortly will provide
capability for SCELBAL to convert decimal
numbers (representing ASCII codes) into
alphanumeric characters for display.

The END statement is used to designate
the conclusion of a higher level program in
the program buffer. When this statement is
interpreted control will return to the Execu-
tive portion of SCELBAL.

There is an optional statement available
in SCELBAL that may be added to the pack-
age if the user desires to utilize the capability
and has sufficient memory to adequately sup-
port the statement. This is the DIM for DIM-
ension statement. It is used to specify the
formation of a one dimensional array in a pro-
gram. Up to four such arrays having a total of
up to 64 entries are permitted in a program
when the optional feature is included in the
user’s version of SCELBAL. Thus, when
a user elects to provide the capability, the
statement:

DIM K(20)

would set up space for an array containing 20
entries. (The array size must be specified
using a numerical value, not a variable.)

The power of SCELBAL is further enhan-
ced by the addition of seven functions that
may be used within statements. These func-
tions are discussed below,

INT returns the INTeger value of the ex-
pression, variable or number requested as the
argument. The integer value is defined as the
greatest integer number less than or equal to
the argument. Thus, a statement which con-
tained:

INT(X)

would result in the value, for instance,
5.0 being returned if X at the time the func-

tion was encountered was greater than or
equal to 5.0 but less than 6.0 (such as 5.0001,
5.54321, 5.99999).

SGN returns the SiGN of the variable, num-
ber, or expression. If the value is greater than
zero, the value +1.0 is returned. If the value
is less than zero the value -1.0 is returned. The
value 0 is returned when the expression or
variable is zero.

ABS returns the ABSolute value (magni-
tude without regard to sign) of the variable
or expression identified as the argument of
the function.

SQR returns the SQuare Root of the ex-
pression, variable, or number.

RND produces a semi-psuedo-RaNDom
number in the range of 0 to 0.99. This
function is particularly useful to have avail-
able for games programs or when it is desired
to have random values when doing statistical
analysis problems. The random number gene-
rated may be operated on to produce ran-
dom numbers within a desired range. For in-
stance, the statement:

LET X = RND(0)*10

would result in X being assigned values in the
range of 0 to 9.99.

CHR is a special CHaRacter function. It
may be used in a PRINT statement and will
cause the ASCII character corresponding to
the decimal value of the argument to be dis-
played. Thus, if:

CHR(193)

was contained in a PRINT statement, the
letter A would be displayed. The argument
portion of the CHR function may be a user
defined variable so that different characters
would be displayed depending on the value
of the variable at the time the PRINT state-
ment was executed.

A reverse function is available for use in

an INPUT statement. This function is speci-
fied by placing a dollar sign ($) immediately
after a variable in an INPUT statement. This
function will cause the decimal value for the
ASCII code of the letter that is inputted to be
returned to the program. Thus, if an INPUT
statement contained the directive:

INPUT A$

and the operator entered the letter Y as
an input to the program, the value 217
would be returned as the value for the
variable A. This function is valuable in a
number of applications. For instance, if
the programmer desired to have a user
answer a question in a program with a
yes or no response, the function enables
the higher level program to ascertain
which response was entered by testing
the decimal value received.

A TAB function is available for use in
a PRINT statement. This function allows
the programmer to direct the display de-
vice to space over to the column number
specified as the argument of the function.
This function thus allows the programmer
to format the output into neat columns.
Thus, the statement:

PRINT X;TAB(10);Y;TAB(20);Z

would result in the value for X being dis-
played starting at column 1, the value Y
starting at column 10, and the value of Z
starting at column 20.

SCELBAL is designed to run in a system
having a minimum of 8 K of read and write
memory. In an 8 K system, the program,
leaving out the optional DIMension (single
dimension array) capability, provides about
1,250 bytes of memory for storage of the
users higher level language program. While
it is possible to include the DiMension capa-
bility in an 8 K system, doing so would re-
duce the program storage area in about half.
One nice feature about SCELBAL is that the
user with more than 8 K of memory can use
the additional memory for higher level pro-

gram storage. A user with, for instance, a
12 K system, may configure the package so
that there are about 5,000 bytes of memory
available for storage of a program. It is reco-
mended that those desiring to include the
DIMension capability of SCELBAL have 9 or
10 K of memory in the system so that the
program storage area will not be prohibitively
small. The package has been arranged so that
those that desire the DIMension option can
install this section in the upper portion of
available memory. Those that do not desire
this feature, may leave it out to provide ad-
ditional program storage room.

Even with just an 8 K system, surprisingly
complex programs can be executed. A game
such as Lunar Landing is easily accomodated
if one reduces the number and lengths of the
messages issued to the player. An 8 K system
will be adequate for many users who are pri-
marily interested in using the package as a
sophisticated programmable calculator.

A 12 K system will support quite sophisti-
cated programs with plenty of alphanumeric
messages. With approximately 5 K bytes of
memory available for program storage in such
a system, the user would have the capability
to execute programs that contained several
hundred statements.

While most 8008 based systems are limited
to a maximum of 16 K of memory, those uti-
lizing the 8080 version of SCELBAL could
conceivably have a program storage area (in
a 64 K system) in excess of 56 thousand
bytes. The kinds of programs one could run
in that amount of memory could fill books
alone!

The execution speed of SCELBAL, while
slow compared to higher level languages that
are designed to run on large computers, is

surprisingly good. The 8008 version is, of
course, about an order of magnitude slower
than the 8080 version due to the relative
speeds of the two types of CPUs. The exe-
cution speed of an 8008 version can be almost
doubled if one installs an 8008-1 CPU in their
system. Some users may want to consider that
option. However, even on an 8008 based unit,
the execution speed of SCELBAL is quite tol-
erable. For instance, the typical response
time between the displaying of a new set of
parameters when running a Lunar Landing
game is in the order of six to seven seconds.
A program that calculates the mortgage pay-
ments on a house on a monthly basis and
displays such data as the payment number
and current balance after each payment re-
quires but a few seconds between the dis-
playing of each new line of data. A dice
playing game responds with new throws
of the dice in the order of a second or so
when using a formula that includes the use
of the random number generating function.
These times are by no means fast but they
are in the general range that one might ob-
tain when solving formulas of similar com-
plexity on commonly used programmable
hand held calculators. Remember, these
times are for the slowest 8008 version. They
are lowered by an order of magnitude on an
8080 based system.

The information presented in this chapter
is merely to whet the reader’s appetite and
present an overall picture of the fundamen-
tal capabilities of SCELBAL. The detailed
use of the language will be presented in a
later chapter along with numerous actual
programming examples. It is now time to
start learning how SCELBAL is organized as
an overall package and then proceed to dis-
cuss the various portions of the program in
detail. This coverage starts with the next
chapter.

FUNDAMENTAL OPERATION OF SCELBAL

The following brief description provides a
summary of the manner in which SCELBAL
proceeds to process a higher level program.
It should help the reader who needs some
confidence building before digging into a soft-
ware package that may initially seem complex
due to the large number of individual machine
language instructions that make up the over-
all package. The reader will hopefully soon
see that all the individual machine language
instructions are organized into relatively small
routines and these in turn are carefully organ-
ized into a surprisingly simple scheme. The
essential concepts of this simple scheme are
presented in this section.

SCELBAL, as discussed in the opening
chapter, is an interpretive language. The pro-
gram simply operates by analyzing each line
of source coding which the operator inputs
in the defined higher level language format
using the defined syntax. As the program ana-
lyzes each portion of a line, it performs the
operations indicated.

Virtually all of the analyzation of a line of
source coding is accomplished when the in-
formation is residing in a temporary storage
buffer in memory called the LINE INPUT

1.) | LIST
2) J[LET X=Y+2
3.) |1283 PRINT X

BUFFER. This LINE INPUT BUFFER is
used to initially store data as it is inputted
to the program from the operator’s console,
which would typically be an input device
such as an ASCII encoded electronic key-
board. As will be illustrated shortly, infor-
mation stored in the LINE INPUT BUFFER
can be transferred to a USER PROGRAM
BUFFER. Or, information in the LINE
INPUT BUFFER can be analyzed and inter-
preted. Finally, a line of information in the
USER PROGRAM BUFFER can be trans-
ferred back to the LINE INPUT BUFFER.

A LINE of information is simply a string
of allowable ASCII encoded characters which
may consist of COMMANDS, NUMBERS,
STATEMENTS, FUNCTIONS, user defined
VARIABLES and mathematical OPERA-
TORS. A LINE is always terminated (during
operator input) when a line ending termi-
nator, the ASCII code for a carriage-return
(CR) is detected.

The pictorial below illustrates three gene-
ral formats for lines of information. These
three general formats essentially provide a
means of controlling the overall operation
of SCELBAL.

| —— EXECUTIVE COMMAND

] ——————— DIRECT MODE

| ———— STORED PROGRAM

The first line format illustrated above has
an EXECUTIVE COMMAND as the first word
in the line. Each time a line of information is
entered into the LINE INPUT BUFFER from
the system’s input device, the EXECUTIVE
portion of SCELBAL checks to see if the

first word in the line represents any one of
the valid SCELBAL commands such as LIST,
RUN, SCRatch, SAVE or LOAD. If so, appro-
priate action is taken such as LISTing the con-
tents of the USER PROGRAM BUFFER or
SCRatching (clearing out the USER PRO-

GRAM BUFFER).

If the first word in a line is not an EXECU-
TIVE COMMAND, SCELBAL checks to see
if the first string of characters represents a
LINE NUMBER such as shown in example
number three on the previous page. If such
is the case it means that the line of infor-
mation is to be stored in the USER PRO-
GRAM BUFFER as part of a high level
stored program Dbeing created by the user.
Appropriate steps are then taken by the
program to append, insert, change or delete
information in the USER PROGRAM BUF-
FER.

If a LINE NUMBER is not detected at
the start of a line, the program assumes
that the information in the line represents
a higher level program STATEMENT which
is to be DIRECTIy interpreted. This would
be the situation when the user desired to use
SCELBAL in the “calculator’”” mode.

In this case, the program would proceed
to EVALuate the information by SCANning
the information in the LINE INPUT BUF-
FER. This is done by examining the SYN-
TAX of the line and initially testing to see
if the first word in the line represents a
statement KEYWORD such as LET, FOR,
IF, GOSUB etc. Upon ascertaining the type
of STATEMENT that is to be processed, the
program is directed to an appropriate routine
that will further evaluate and process the in-
formation on the line. This is accomplished
by calling on routines that SCAN the line and
decode the information, then performing the
indicated operations. To do this, other rout-
ines such as a PARSER (routine to detect and
decode mathematical operators), FUNCTION
subroutines (such as SQR, TAB, INT), and
FLOATING POINT mathematical routines
may be called on to perform the operations
specified by the higher level syntax. This pro-
cess is accomplished on a step-by-step basis
following logical rules that establish a HEIR-
archy for performing the various types of
operations that will be explained in detail in
the appropriate sections of this publication.

O.K. The reader now knows how three
basic line formats direct SCELBAL to per-
form an executive function, or place a line of
information into the USER PROGRAM BUF-
FER, or DIRECTIly execute a line of infor-
mation being held in the INPUT LINE BUF-
FER. What happens when it is desired to exe-
cute a higher level program that has been
stored in the USER PROGRAM BUFFER?

The scheme is still very simple. When the
executive portion of SCELBAL detects a line
containing the executive RUN command the
program simply does the following. It goes
to the start of the USER PROGRAM BUF-
FER and pulls a copy of the first line of in-
formation from that storage area back into
the INPUT LINE BUFFER. As it does this
it strips off the LINE NUMBER. The infor-
mation in the LINE INPUT BUFFER is then
simply processed in the same manner in which
a DIRECT type of line would be handled.
When the directives contained in that line
have been performed, the program proceeds
to get the next line in the USER PROGRAM
BUFFER (unless directed otherwise by such
statements as IF, GOSUB and so forth), strip
off the line number, and DIRECTly execute
that statement. This process continues until
the end of the USER PROGRAM BUFFER
has been reached, or an END statement is
encountered!

These operational concepts, the reader
may now agree, are indeed quite straight-
forward. True, it does take thousands of
machine language instructions to accom-
plish the tasks, the concepts of which are
so easily conveyed in just a few paragraphs.
However, the essential point being made is
that the overall plan is quite simple. The
reader should keep this simple picture in
mind as the various sections are discussed
in detail. A similar pattern of simplicity
will hopefully emerge as the various levels
of detail are presented in the following
chapters. Readers should refer to this sec-
tion whenever they feel they are becoming
too immersed in the details of individual
routines to review where the particular

process being discussed fits in to the basically has just been presented as a quick and easy
simple scheme of SCELBAL. The pictorials review when desired.
provided below serve as a summary of what

Representative lines in
LINE INPUT BUFFER

LIST + EXECUTIVE COMMAND therefore do LIST executive routine.
or
PRINT X] ———————— No line number therefore DIRECT (‘“‘calculator’’) interpret mode.
or
[100 LET X = Y+ 2] Has a line number therefore contains information to be stored in
the USER PROGRAM BUFFER.

or Insert
1 90 IF X =N THEN 120 |
~[95 FOR Y=1 TO 10] NOTE
[105 INPUT 7] — Chanee 1105 INPUT S | The EXECUTIVE portion of
or f; | 110 PRINT M | SCELBAL can Insert, Change,
110 Delete) 1'115 LET M= SQR(X*Z) | Delete or Append lines to the
or 4 1 120 PRINT M 4 USER PROGRAM BUFFER
125 NEXT X __éf_pL just by examining the line
number!
USER PROGRAM BUFFER
SUMMARY OF FUNDAMENTAL OPERATION OF SCELBAL AS CONTROLLED
BY THE THREE DIFFERENT TYPES OF LINES IN THE LINE INPUT BUFFER
LINE INPUT BUFFER When SCELBAL is in the RUN mode each line is pulled from the

USER PROGRAM BUFFER. The line number is stripped off and
[IF X =N THEN IZO]ﬁ the information in the line is interpreted and executed.

(90 IF X =N THEN 120]
95 FOR Y=1 TO 10
(100 LET X = Y +2
(105 INPUT Z]
115 LET M = SQR(X*Z)
(120 PRINT M
(125 NEXT X

=

SEEREE;

USER PROGRAM BUFFER

OPERATION OF SCELBAL WHEN IN THE PROGRAM RUN MODE

THE EXECUTIVE

The EXECUTIVE portion of SCELBAL is
the part that essentially enables the operator
to control the primary operations of the pro-
gram from a keyboard device. This part of
the program actually performs two types of
operations. It can decode and direct the pro-
gram to execute any of the defined executive
COMMANDS which are SCRatch, LIST,
RUN, SAVE and LOAD. It also serves as an
Editor to enable information to be arranged
in the USER PROGRAM BUFFER. This
buffer is an area in memory used to hold a
user created program in the high level syntax
of SCELBAL. The executive RUN command
causes a program stored in this area to be
executed as a stored program.

Before beginning to present the routines
that make up SCELBAL it will be beneficial
to explain some aspects of the presentation
techniques to be used in this publication.

As each section of the program is dis-
cussed the actual source listings for that sec-
tion of the program will be presented with
highly detailed comments. These source
listings will refer to the assembled version
of the program for an 8008 machine that
will be presented later in this publication.
(An assembled version for an 8080 machine
will also be presented.) That is, the values
of pointers, counters, temporary storage
locations, and buffers used in the source
listings will be those values used in the ac-
tual assembled example listing.

SCELBAL uses three PAGES of memory
for the storage of pointers, counters, temp-
orary data areas and look up tables. In the
assembled program presented in this publi-
cation these areas were assigned to pages
01, 26 and 27 in memory. A considerable
number of machine language instructions
in the program are devoted to establishing
pointers to these areas through the use of
LLI XXX and LHI YYY instructions. It is
likely that some users may desire to assemble
the package to reside in areas of memory

other than those used by the version pro-
vided. In such an event, if the storage loca-
tions assigned to pages 01, 26 and 27 were
altered, the user would have to alter the
values used when setting up pointers to
those areas. As an aid to those that might
undertake this task, those LHI YYY instruc-
tions that point to those areas in memory
have been ‘‘flagged’ with a double asterisk
(**) at the beginning of the associated com-
ments lines. (It is assumed that the locations
of storage areas within a page would not be
altered.) Thus, a person desiring to create a
new assembly of the program would be able
to easily spot those instructions to which
particular attention would have to be paid.

While discussing the subject of pointers,
counters, temporary storage locations, etc.,
it will be pointed out that the actual loca-
tions of all these storage locations will be
presented in the final assembled listing of
SCELBAL. During the discussion and presen-
tation of the various routines that make up
the program during the next several chapters,
the reader does not have to be concerned
with where each and every such storage
location resides. Indeed, there are too manv
of them for a person to even attempt to keep
close tabs on. The actual locations of such
storage areas is not important during the
description process as it is only necessary
for the reader to realize that such locations
do exist and to understand the functions
that they perform when required.

During the course of the following chap-
ters, virtually each and every routine used in
SCELBAL will be presented in its source
listing format. However, due to the general
complexity of the program (in the micro-
scopic view point of individual instructions,
remember, the fundamental concepts are
quite simple), some routines may not be ex-
plained or presented in detail the first time
they are utilized in the source listing. In
these cases the user need only understand
that there is a routine or subroutine that

will perform a particular function, the de- from the system’s input device was pre-

tails of which will eventually be presented. sented. The precise format will now be
This is particularly true in the next several shown.

chapters as the beginning sections of the

program are discussed. Whenever the operator enters informa-

tion on the system’s input device an input
routine (labeled STRIN) will arrange a line
LINE FORMAT of information in an INPUT BUFFER in
the following format which is illustrated
for the example input:
In the preceeding chapter, the general
format of a line of information as it came 100 LET X =Y + 2

021 261 260 260 240 314 305 324 240 330 240 275 240 331 240 253 240 262

cc 1 0 0 sp L E T sp X sp.= sp Y sp + sp 2

The first line in the above illustration tion in a character string buffer for that in-
shows the actual machine code that would be formation, counting the number of charac-
stored in successive locations in the INPUT ters inputted until a line terminating charac-
LINE BUFFER. The line beneath it gives the ter (carriage-return) is received, and then
data the code represents in the example. The storing the value of that count in the first
reader should note that the first entry in the byte of the character string buffer. The
string represents a CHARACTER COUNT. character count for a line of information
That is a binary count of the number of bytes is an important piece of data that is utilized
that the character string consumes. This by many parts of the program package. The
CHARACTER COUNT (cc) will always be reader will soon see how this information
the first byte of data in a character string is utilized when manipulating lines of data
that is processed by the program. The re- in the Executive/Editor portion of SCELBAL.
maining bytes in a character string are oc-
cupied by the ASCH ccde for the charac- With the precise manner in which charac-
ters being represented shown in eight-b:it ter strings are stored now explained, one can
octal format with the parity bit always be- proceed to present the first major section of
ing defined in this program as being in a SCELBAL. The section to be presented is
marking (logic one) state. The CHARAC- illustrated by the flow chart shown on the
TER COUNT for a line of information is next two pages. The commented source
calculated by simply reserving the first loca- listing begins below.

SCELBAL and EXECUTIVE start here. This first part
sets a pointer to a buffer containing the message
READY and calls on a subroutine to display this to the
operator indicating program is in the EXECUTIVE
COMMAND mode.

EXEC, LLI352 Load L with address of READY message

LHI 001 ** T,oad H with page of READY message
CAL TEXTC Call subroutine to display the READY message

4-2

[DISPLAY “READY”|

v
)
INPUT A LINE FROM OPERATOR
AND PLACE IN INPUT BUFFER)
ISIT YES LIST THE CONTENTS
«LIST" OF THE
PROGRAM BUFFER
RUN /
SET POINTERS
TO CLEAR OUT
PROGRAM BUFFER
/
YES SAVE USER’S PROGRAM
“SAVE” ON EXTERNAL F—
? BULK STORAGE DEVICE
NO ISIT YES RESTORE USER’S PROGRAM
< “LOAD” FROM BULK STORAGE |
\‘/ TO PROGRAM BUFFER
1
CALL SYNTAX SUBROUTINE A
TO DETERMINE STATEMENT
ERROR
NO YES
SYNTAX ERROR}—————J{ERROR ROUTINE |———

NO IS

LINE NUMBER

YES

DIRECT

SET POINTER TO START
OF PROGRAM BUFFER

TEST TO SEE IF LINE NUMBER
POINTED TO IN PROGRAM
BUFFER IS LESS THAN LINE
NUMBER IN INPUT BUFFER

<- i
<

YES
NO ?\

ADVANCE PROGRAM

1

TEST TO SEE IF LINE NUMBER
POINTED TO IN PROGRAM
BUFFER IS SAME AS LINE

NUMBER IN INPUT BUFFER

YES NO

REMOVE LINE POINTED
TO IN PROGRAM BUFFER

L <

TO NEXT LINE NUMBER

BUFFER POINTER

r y

INSERT LINE IN INPUT
BUFFER INTO THE
PROGRAM BUFFER

NO

YES
APPEND LINE TO CONTENTS
OF THE PROGRAM BUFFER

EXEC1, LLIO000
LHI 026

CAL STRIN

LAM
NDA

JTZ EXEC1

This next section fetches a line from the operator’s
input device into the INPUT LINE BUFFER. After
making sure that the line contains data it tests to see
if the first word in the line is the command LIST.

If so, it sets up to perform the LIST directive.

Load L with starting address of INPUT LINE BUFFER
[,oad H with page of INPUT LINE BUFFER

Call subroutine to input a line into the buffer

The STRIN subroutine will exit with pointer set to the
CHARACTER COUNT for the line inputted. Fetch the
Value of the counter, if it is zero then line was blank.

4-4

LIST,

NOLIST,

LLI 335
LHI 001
LDI 026
LEI 000
CAL STRCP
JFZ NOLIST
LLI 0600
LHI 033

LAM

NDA

JTZ EXEC
CAL TEXTC
CAL ADV
CAL CRLF
JMP LIST

LLI 342
LHI 001
LEI 000
LDI 026
LEI 000
CAL STRCP
JTZ RUN
LDI 026
LEI 000
LLI 346
LHI 001
CAL STRCP
JFZ NOSCR
LHI 026
LLI 364
LMI 033
INL

LMI 000
LLI 077
LHI 027
LMI 001
LLI 075
LMI 000
LLI120
LMI 000
LLI 210

Load L with address of LIST in look up table

** Load H with address of LIST in look up table

** Load D with page of line input buffer

Load E with start of line input buffer

Call string compare subroutine to see if first word in
Input buffer is LIST. Jump ahead if not LIST.

If LIST, set up pointers to start of USER PROGRAM
++ BUFFER. (Note user could alter this starting addr)

Next portion of program will LIST the contents of the
USER PROGRAM BUFFER until an end of buffer
(zero byte) indicator is detected.

Fetch the first byte of a line in the USER PROGRAM
BUFFER and see if it is zero. If so, have finished LIST
So go back to start of Executive and display READY.
Else call subroutine to display a line of information
Now call subroutine to advance buffer pointer to
Character count in next line. Also display a CR & LF.
Continue LISTing process

If line inputted by operator did not contain a LIST
command, continue program to see if RUN or SCRatch
command.

Load L with address of RUN in look up table

** [,oad H with address of RUN in look up table

Load E with start of line input buffer

** [L,oad D with page of line input buffer

(Reserve 2 locs in case of patching by duplicating above)
Call string compare subroutine to see if first word in
Input buffer is RUN. Go to RUN routine if match.

** If not RUN command, reset address pointers back
To the start of the line input buffer

Load L with address of SCR in look up table

** Load H with page of SCR in look up table

Call string compare subroutine to see if first word in
Input buffer is SCR. If not then jump ahead.

** If found SCR command then load memory pointer
With address of a pointer storage location. Set that

T+ Storage location to page of start of USER PRO-
GRAM BUFFER. (Buffer start loc may be altered).
Then adv pntr and do same for low addr portion of pntr
Now set pointer to address of VARIABLES counter

** Storage location. Initialize this counter by placing
The count of one into it. Now change the memory pntr
To storage location for number of dimensioned arrays
@@ And initialize to zero. (@@ = Substitute NOPs if
@@ DIMension capability not used in package.) Also
@@ Initialize 1’st byte of array name table to zero.

Set pointer to storage location for the first byte of the

4-5

SCRLOP,

NOSCR,

SYNERR,

SYNTOK,

LMI 000
INL

LMI 000
LHI 033
LLI 000
LMI 000
LHI 057

LMI 000

INL

JFZ SCRLOP
JMP EXEC

LEI 272
LDI 001
LHI 026
LLI 000
CAL STRCP
JTZ SAVE
LLI 277
LHI 001
LDI 026
LEI 000
CAL STRCP
JTZ LOAD
LLI 360
LHI 026
LMI 033
INL

LMI 000
CAL SYNTAX
LLI 203
LHI 026
LAM

NDA

JFS SYNTOK

LAI 323
LCI 331
JMP ERROR

LLI 340
LAM
NDA

VARIABLES symbol table. Initialize it to zero too.
Advance the pointer and zero the second location
In the Variables table also.

F4 Load H with page of start of USER PROGRAM
BUFFER. (Buffer start location could be altered.)
Clear first location to indicate end of user program.
@@ Load H with page of ARRAYS storage

@@ And form a loop to clear out all the locations
@@ On the ARRAYS storage page. (@@ These become
@@ NOPs if DIMension capability deleted fm package.)
SCRatch operations completed, go back to EXEC.

If line inputted did not contain RUN or SCRatch com-
mand, program continues by testing for SAVE or LOAD
commands. If it does not find either of these com-
mands, then operator did not input an executive com-
mand. Program then sets up to see if the first entry in
the line inputted is a LINE NUMBER.

Load E with address of SAVE in look up table

*% Load D with page of look up table

*#% L,oad H with page of input line buffer

Set L to start of input line buffer

Call string compare subroutine to see if first word in

1+ Input buffer is SAVE. If so, go to user’s SAVE rtn

If not SAVE then load L with address of LOAD in look
** Up table and load H with page of look up table

*% Load D with page of input line buffer

And L to start of input line buffer

Call string compare subroutine to see if first word in

1 Input buffer is LOAD. If so, go to user’s LOAD rtn
If not LOAD then set pointer to address of storage loc
For USER PROGRAM BUFFER pointer. Initialize this
++ Pointer to the starting address of the program buffer.
Advance memory pntr. Since pointer storage requires
Two locations, initialize the low addr portion also.

Call the SYNTAX subroutine to obtain a TOKEN indi-
Cator which will be stored in this location. Upon return
**% From SYNTAX subroutine set memory pointer to
The TOKEN indicator storage location and fetch the
Value of the TOKEN. If the value of the syntax TOKEN
Is positive then have a valid entry.

However, if SYNTAX returns a negative value TOKEN
Then have an error condition. Set up the letters SY in
ASCII code and go to display error message to operator.

Set pointer to start of LINE NUMBER storage area

First byte there will contain the length of the line
Number character string. Fetch that value (cc).

4-6

GETAUX,

GETAUO,

GETAU1,

JTZ DIRECT
LLI 360

LMI 033
INL

LMI 000

LLI 201
LHI 026
LMI 001
LLI 350
LMI 000
LLI 201
CAL GETCHP
JTZ GETAU1
CPI 260
JTS GETAU2
CPI 272
JFS GETAU2
LLI 350
LHI 026
CAL CONCT1

LLI 201
LHI 026
LBM
INB
LMB
LLI 360
LHI 026
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GETAUO

If line number blank, have a DIRECT statement!

If have a line number must get line in input buffer into
++ User program buffer. Initialize pointer to user buffer.
This is a two byte pointer so after initializing page addr
Advance pointer and initialize location on page address

If the line in the LINE INPUT BUFFER has a line num-
ber then the line is to be placed in the USER PRO-
GRAM BUFFER. It is now necessary to determine
where the new line is to be placed in the USER PRO-
GRAM BUFFER. This is dictated by the value of the
new line number in relation to the line numbers cur-
rently in the program buffer. The next portion of the
program goes through the contents of the USER PRO-
GRAM BUFFER comparing the values of the line num-
bers already stored against the value of the line number
currently being held in the LINE INPUT BUFFER.
Appropriate action is then taken to Insert or Append,
Change, or Delete a line in the program buffer.

Set memory pointer to line character pointer storage
** Location and then initialize that storage location
To point to the 1’st character in a line

Set memory pointer to addr of start of auxiliary line
Number storage area and initialize first byte to zero
Set memory pointer to line character pointer storage loc
Fetch a char in line pointed to by line pointer

If character is a space, skip it by going to advance pntrs
If not a space check to see if character represents a
Valid decimal digit in the range 0 to 9 by testing the
ASCII code value obtained. If not a decimal digit then
Assume have obtained the line number. Go process.

If valid decimal digit want to append the digit to the
** Current string being built up in the auxiliary line
Number storage area so call sub to concat a character.

Reset memory pointer to line character pntr storage loc
** On the appropriate page.

Fetch the pointer, increment it, and restore new value

Set memory pointer to pgm buff line pntr storage loc

*#

Bring the high order byte of this double byte pointer
Into CPU register C. Then advance the memory pntr
And bring the low order byte into register .. Now trans-
Fer the higher order portion into memory pointer H.
Obtain the char cntr (cc) which indicates the length of
The line being pointed to by the user program line pntr
Compare this with the value of the chars processed so
Far in current line. If not equal, continue getting line nr.

GETAUZ2,

NOTEND,

NOSAME,

LLI 360

LHI 026

LDM

INL

LLM

LHD

LAM

NDA

JFZ NOTEND
JMP NOSAME

LLI 350

LHI 026

LDI 026

LET 340
CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI 360

LHI 026
LCM

INL

LLM

LHC

LBM

INB

CAL REMOVE
LLI 203

LHI 026
LAM

NDA

JTZ EXEC
LLI 360

LHI 026
LDM

INL

LEM

LLI 000

LHI 026
LBM

INB

CAL INSERT
LLI 360

LHI 026
LDM

INL

LEM

LLI 000

LHI 026
CAL MOVEC
JMP EXEC1

Reset mem pntr to pgm buffer line pntr storage

** On this page and place the high order byte

Of this pointer into CPU register D

Advance the memory pointer, fetch the second

Byte of the pgm buffer line pointer into register L
Now make the memory pointer equal to this value
Fetch the first byte of a line in the program buffer
Test to see if end of contents of pgm buff (zero byte)
If not zero continue processing. If zero have reached
End of buffer contents so go APPEND line to buffer.

Load L with addr of auxiliary line number storage loc
** Load H with addr of aux line number storage loc
** Load D with addr of line number buffer location
Load E with address of line number buffer location
Compare line nr in input buffer with line number in
User program buffer. If lesser in value keep looking.

If greater in value then go to Insert line in pgm buffer
If same values then must remove the line with the same
** Line number from the user program buffer. Set up
The CPU memory pointer to point to the current
Position in the user program buffer by retrieving that
Pointer from its storage location. Then obtain the first
Byte of data pointed to which will be the character
Count for that line (cc). Add one to the cc value to take
Account of the (cc) byte itself and then remove that
Many bytes to effectively delete the line fm the user
Program buffer. Now see if line in input buffer consists
** Only of a line number by checking SYNTAX
TOKEN value. Fetch the TOKEN value from its
Storage location. If it is zero then input buffer only
Contains a line number. Action is a pure Delete.

Reset memory pointer to program buffer

** Line pointer storage location

Load high order byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Load L with address of start of line input buffer

** Do same for CPU register H

Get length of line input buffer

Advance length by one to include (cc) byte

Go make room to insert line into user program buffer
Reset memory pointer to program buffer

** Line pointer storage location

Load higher byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Load L with address of start of line input buffer

** Do same for CPU register H

Call subroutine to Insert line in input buffer into the
User program buffer then go back to start of EXEC.

MOVEC,

MOVEPG,

CONTIN,

GETCHP,

REMOVE,

LBM

INB

LAM

CAL ADV
CAL SWITCH
LMA

CAL ADV
CAL SWITCH
DCB

JFZ MOVEPG
RET

LLI 360

LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360

LHI 026
LMD

INL

LME

JMP GETAUX

LHI 026
LBM
LLI 360
LDM
INL
LEM
CAL ADBDE
LHD
LLE
LAM
CPI 240
RET

CAL INDEXB
LCM

CAL SUBHL
LMC

LAC

NDA

JTZ REMOV1
CAL ADV
JMP REMOVE

Fetch length of string in line input buffer
Increment that value to provide for (cc)

Fetch character from line input buffer

Advance pointer for line input buffer

Switch memory pointer to point to user pgm buffer
Deposit character fm input buff into user pgm buff
Advance pointer for user program buffer

Switch memory pntr back to point to input buffer
Decrement character counter stored in CPU register B
If counter does not go to zero continue transfer ops
When counter equals zero return to calling routine

Reset memory pointer to program buffer

** Line pointer storage location

Load high order byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Now set CPU register H to high part of address
And set CPU register L to low part of address
Fetch the character counter (cc) byte fm line in
Program buffer and add one to compensate for (cc)
Add length of line value to old value to get new pointer
Reset memory pointer to program buffer

** Line pointer storage location

Restore new high portion

Advance memory pointer

And restore new low portion

Continue til find point at which to enter new line

** Load H with pointer page (low portion set upon
Entry). Now fetch pointer into CPU register B.

Reset pntr to pgm buffer line pointer storage location
Load high order byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Add pointer to pgm buffer pointer to obtain address of
Desired character. Place high part of new addr in H.
And low part of new address in E.

Fetch character from position in line in user pgm buffer
See if it is the ASCII code for space

Return to caller with flags set to indicate result

Add (cc) plus one to addr of start of line

Obtain byte from indexed location and

Subtract character count to obtain old location

Put new byte in old location

As well as in the Accumulator

Test to see if zero byte to indicate end of user pgm buff
If it is end of user pgm buffer, go complete process
Otherwise add one to the present pointer value

And continue removing characters from the user pgm bf

4-9

REMOV1,

INSERT,

INSER1,

INSER3, INCLIN,

LLI 364
LHI 026
LDM
INL
LAM
SUB
LMA
RFC
DCL
DCD
LMD
RET

LLI 364

LHI 026
LAM

INL

LLM

LHA

CAL INDEXB
LAH

CPI 054

JFS BIGERR
CAL SUBHL

LCM

CAL INDEXB
LMC

CAL SUBHL
CAL CPHLDE
JTZ INSER3
CAL DEC
JMP INSER1

LLI 000
LHI 026
LBM
INB

LLI 364
LDM
INL
LEM
CAL ADBDE
LME
DCL
LMD
RET

Load L with end of user pgm buffer pointer storage loc
** Load H with page of that pointer storage location
Get page portion of end of pgm buffer address

Advance memory pointer

And get low portion of end of pgm buffer address into
Accumulator then subtract displacement value in B
Restore new low portion of end of pgm buffer address
If subtract did not cause carry can return now
Otherwise decrement memory pointer back to page
Storage location, decrement page value to give new page
And store new page value back in buffer pntr storage loc
Then return to calling routine

Load L with end of user pgm buffer pointer storage loc
** Load H with page of that pointer storage location
Get page portion of end of program buffer address
Advance memory pointer

Load low portion of end of program buffer address
Into L and finish setting up memory pointer

Add (cc) of line in input buffer to form new end of
Program buffer address. Fetch new end of buffer page
T+ Address and see if this value would exceed user’s
System capability. Go display error message if so!
Else restore original value of end of buffer address

Bring byte pointed to by H & L into CPU register C
Add displacement value to current memory pointer
Store the byte in the new location

Now subtract displacement value from H & L
Compare this with the address stored in D & E

If same then go finish up Insert operation

Else set pointer to the byte before the byte just
Processed and continue the Insert operation

Load L with start of line input buffer

** Load H with page of start of line input buffer
Fetch length of the line in line input buffer

Increment value by one to include (cc) byte

Set memory pointer to end of user pgm buffer pointer
Storage location on same page and fetch page address
Of this pointer into D. Then advance memory pointer
And get low part of this pointer into CPU register E.
Now add displacement (cc) of line in input buffer to
The end of program buffer pointer. Replace the updated
Low portion of the new pointer value back in storage
And restore the new page value back into storage
Then return to calling routine

CPHLDE,

ADBDE,

CTRLC,

FINERR,

FINERI,

DVERR,

FIXERR,

NUMERR,

LAH
CPD
RFZ
LAL
CPE
RET

LAE
ADB
LEA
RFC
IND

RET

LAI 336
LCI 303
JMP ERROR

LLI 340
LHI 026
LAM

NDA

JTZ FINER1
LLI 366
LHI 001
CAL TEXTC
LLI 340
LHI 026
CAL TEXTC
CAL CRLF
JMP EXEC

LAI 304
LCI 332
JMP ERROR

LAI 306
LCI 330
JMP ERROR

LAI 311
LCI 316
LLI 220
LHI 001
LMI 000
JMP ERROR

The following are small subroutines used by the
EXECutive and other parts of SCELBAL.

Subroutine to compare if the contents of CPU registers
H & L are equal to registers D & E. First compare
Register H to D. Return with flags set if not equal. If
Equal continue by comparing register L to E.

IF L equals E then H & L equal to D & E so return to
Calling routines with flags set to equality status

Subroutine to add the contents of CPU register B (single
Byte value) to the double byte value in registers D & E.
First add B to E to form new least significant byte
Restore new value to E and exit if no carry resulted.

If had a carry then must increment most significant byte
In register D before returning to calling routine

Set up ASCII code for T (up arrow) in Accumulator.
Set up ASCII code for letter ‘C’ in CPU register C.
Go display the ‘Control C’ condition message.

Load L with starting address of line number storage area
** Load H with page of line number storage area

Get (cc) for line number string. If length is zero meaning
There is no line number stored in the buffer then jump
Ahead to avoid displaying “AT LINE” message

Else load L with address of start of “AT LINE’’ message
** Stored on this page

Call subroutine to display the “AT LINE’’ message

Now reset L to starting address of line number storage
** Area and do same for CPU register H

Call subroutine to display the line number

Call subroutine to provide a carriage-return and line-feed
To the display device then return to EXEC UTIVE.

Set up ASCII code for letter ‘D’ in Accumulator
Set up ASCII code for letter ‘Z” in CPU register C
Go display the ‘DZ’ (divide by zero) error message

Set up ASCII code for letter ‘F’ in Accumulator
Set up ASCII code for letter ‘X’ in CPU register C
Go display the ‘FX’ (FiX) error message

Set up ASCII code for letter ‘I’ in Accumulator
Set up ASCII code for letter ‘N’ in CPU register C
Load L with address of pointer used by DINPUT
** Routine. Do same for register H.

Clear the location

Go display the ‘IN’ (Illegal Number) error message

INSTR,

INSTR1,

INSTR2,

ADVDE,

LDI 026
LEI 000

CAL ADVDE
CAL SAVEHL
LBM

CAL ADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLI 000

LHI 026

LAM

CPE

JTZ INSTR2
CAL RESTHL
JMP INSTR1
HLT

LEI 000
RET

INE
RFZ
IND
RET

The following subroutine, used by various sections of
SCELBAL, will search the LINE INPUT BUFFER for

a character string which is contained in a buffer starting
at the address pointed to by CPU registers H & L. when
the subroutine is entered.

** Set D to starting page of LINE INPUT BUFFER
Load E with starting location of LINE INPUT BUFFER

Advance D & E pointer to the next location (input
Buffer). Now save contents of D, E, H & L before the
Compare operations. Get length of TEST buffer in B.
Advance H & L pointer to first char in TEST buffer
Compare contents of TEST buffer against input buffer
For length B. If match, restore pntrs and exit to caller.
If no match, restore pointers for loop test.

Load L with start of input buffer (to get the char cntr)
** Load H with page of input buffer.

Get length of buffer (cc) into the accumulator.
Compare with current input buffer pointer value.

If at end of input buffer, jump ahead.

Else restore test string address (H&L) and input buffer
Address (D&E). Look for occurence of test string in In.
Safety halt. If program reaches here have system failure.

If reach end of input buffer without finding a match
Load E with 000 as an indicator and return to caller.

Subroutine to advance the pointer stored in the register
Pair D & E. Advance contents of E. Return if not zero.
If register E goes to zero when advanced, then advance
Register D too. Exit to calling routine.

THE MAIN SYNTAX ROUTINE

In order to avoid confusing the reader with
the title of this chapter, it will be pointed out
that the word SYNTAX generally refers to
the complete set of rules or grammar associa-
ted with a language such as SCELBAL. The
above title implies more than this single chap-
ter will cover. The preceeding chapter actual-
ly began explaining the complete syntax of
SCELBAL by showing how Executive com-
mands were processed and defining the use of
line numbers. Other rules of the syntax de-
fined for SCELBAL will become apparent as
other chapters are presented. The section of
SCELBAL to be discussed in this chapter is
limited to the first major subset of the lan-
guage which consists of the statement classi-
fications. Statements are the major types of
higher level directives which the language can
interpret and execute such as LET, GOTO,
IF, FOR etc. When SCELBAL finds one of
these statements in a line of higher level cod-
ing, it will know what major type of opera-
tion it is to perform. The portion of the pro-
gram that makes this initial syntax deter-
mination has been labeled SYNTAX, hence
the title name of this chapter.

The SYNTAX subroutine to be presented
in this chapter is not difficult to understand
once the reader gets an overall view of the
process. Referring to the flow chart for the
routine illustrated on the next several pages
will help the reader get the essential concepts
involved.

The purpose of the routine is simply to
determine whether a group of characters
(taken from the contents of the LINE INPUT
BUFFER) represent a program line number,
and a valid statement KEYWORD. A KEY-
WORD in this context is simply a group of
characters that form the name of a valid
statement such as LET, GOSUB, FOR, NEXT
and so forth. If a line number is found, and/
or a valid KEYWORD is found, the routine
will place a TOKEN value in a special TOKEN
BUFFER to indicate what the SYNTAX sub-
routine processed. A TOKEN value in this

context is simply a numerical value used to
symbolize the finding of a particular type of
character string. It is'a sort of shorthand nota-
tion that serves to reduce the amount of data
that must be processed by the computer in
the future.

Thus, for instance, if during the opera-
tion of the SYNTAX routine, the keyword
REM is detected, a token value of 001 (oc-
tal) will be established. The finding of the
keyword GOTO would result in a token
value of 004 being set up. Each valid key-
word has a token value associated with it.
The token value established is then used
later by other portions of SCELBAL to
signify a particular type of operation using
much less storage space than would be re-
quired if one had to refer to an entire
string of ASCII characters that make up a
keyword. The technique of establishing a
token value to represent a particular string
of characters is thus a powerful method in
the process of converting higher level Eng-
lish language directives which are conven-
ient for human programmers, down to the
simple numerical directives that the com-
puter needs for sustenance!

The process by which keywords are con-
verted to token values is shown quite clear-
ly in the flow chart provided. Essentially
the routine seeks to find a match between
a group of characters (taken from the line
input buffer and examined while in a work-
ing register) to determine if they match any
entry in a keyword look-up table. The key-
word look-up table utilized by this routine
is formatted as follows:

CCC Number of characters in keyword.
AAA ASCII code for 1’st letter of keyword

BBB ASCII code for 2’nd letter of keyword
NNN ASCII code for N’th letter of keyword
CCC Number of characters in next keyword
AAA ASCII code for 1’st letter of the next

entry in the keyword table, etc.

CLEAR SYMBOL BUFFER

SEE IF FIRST STRING OF
CHARACTERS REPRESENT
A LINE NUMBER

NO YES
~ _
STORE LINE NUMBER

IN LINE NUM]BER BUFFER

N

YES

SET TOKEN VALUE TO
ZERO TO INDICATE ONLY|
HAVE A LINE NUMBER

PROCESS NEXT CHARACTER|
STRING IN THE LINE

\YES
. A

YES

SET TOKEN VALUE|
TO 015 OCTAL

SET TOKEN VALUE
TO 016 OCTAL

CONCATENATE CHARACTER
TO SYMBOL BUFFER

INITIALIZE TOKEN COUNTER
(COUNT OF ‘1’ = ‘REM’)
|

N

—
COMPARE CURRENT STRING
OF CHARACTERS IN THE SYMBOL
BUFFER AGAINST AN ENTRY IN
THE KEYWORD TABLE

NO YES

MATCH?

[INCREMENT TOKEN COUNTER]

ADVANCE KEYWORD TABLE
POINTER TO NEXT TABLE ENTRY

[
RESET POINTER TO BEGINNING
OF THE CURRENT CHARACTER

STRING IN THE SYMBOL BUFFER/|

TESTED YES
FOR ALL KEY-

WORDS ?

NO

ADVANCE INPUT LINE BUFFER

POINTER TO NEXT CHARACTER

NO END OF YES

A

LINE INPUT
BUFFER?

|SET TOKEN = ‘-1’ FOR ERROR]

/S

The table contains all the valid keywords
defined for statement types used in the high
level language SCELBAL. These are: REM,
IF, LET, GOTO, PRINT, INPUT, FOR,
NEXT, GOSUB, RETURN, DIM and END.
They appear in the table in the order just
presented.

Since the number of characters making up
a keyword can vary, the technique used to
look for a match between a group of charac-
ters in the line input buffer and the look-up
table is as follows.

Characters are taken one at a time from
the line input buffer and placed in a special
buffer (referred to as the SYMBOL buffer).
Each time a character is added to the symbol
buffer, a search is made through the keyword
look-up table. At the start of the search a
TOKEN value of 001 (octal) is set in the
TOKEN VALUE storage register. Now, as
each entry in the look-up table is compared
against the character string currently in the
symbol buffer and fails to match, the token
value is incremented. This technique results,
if a match IS found, in the token value al-
ready being set to the proper token value.
For instance, if a match was found for the
keyword PRINT, the token value would be
at 005. (Print is the fifth entry in the look-up
table.) If a match is not found during the
search of the table, the routine goes back and
appends another character from the input
buffer onto the symbol buffer. It then re-
initializes the token value back to 001 and
tries searching the table again. This process
continues until either a match is found or an
end of character string terminator is detected.
Notice that if a keyword is not found, once
the table look-up process is started, that an
error condition (SYntax error) is assumed to
exist. For such an error condition, a negative
value (377 octal) is placed in the token value
register so that the routine calling SYNTAX
will be able to detect the error condition.

The reader should note that the flow chart
illustrates two special syntax conditions. One
is when an equal (=) sign is detected. Finding
an equal sign before a keyword has been es-

tablished can occur for a special situation
called the IMPLIED LET. The IMPLIED LET
statement enables SCELBAL to interpret a
statement such as:

X=Y

without having to put in the actual LET
keyword. An IMPLIED LET statement
signified by an equal sign at the point in
a line where the SYNTAX routine would
be processing the information is handled
as a special keyword and given the token
value of 015.

A second special case is defined for
handling array (subscripted) variables in
an IMPLIED LET situation. The use of
a left hand parenthesis “(’’ at this point
in a line is assigned a token value of 016.

One of the principal functions of the
SYNTAX subroutine, which is shown at
the beginning of the flow chart, is to see
if the line being processed contains a line
number and to store the line number in a
special line number buffer. This is because
the SYNTAX routine is the first routine
to be called when SCELBAL is in the RUN
mode each time a new line is processed.
Lines stored in the program buffer start
with a line number, and then the keyword
statement. Naturally, the SYNTAX sub-
routine must get beyond the line number
before it can look for the keyword in the
line. However, there are certain cases, such as
when SYNTAX is called by the EXECutive
routine (described in the previous chapter)
where a line in the input buffer may contain
just a line number and no keyword. (This is
the situation when an operator wishes to de-
lete a specific line number from the user’s
program buffer.) For this special case, the
SYNTAX subroutine assigns a token value
of 000.

The converse case can occur when a
DIRECT (calculator mode) statement is being
processed. In that case there would be no line
number. The flow chart illustrates that if the
first group of characters in a line is not num-

erical the routine proceeds to just look for a

keyword.

The reader should now be prepared to fol-

SYNTAX,

SYNTX1,

SYNTX2,

SYNTX3,

SYNTX4,

CAL CLESYM
LLI 340
LHI 026
LMI 000
LLI 201
LMI 001

LLI 201

CAL GETCHR
JTZ SYNTX2
CPI 260

JTS SYNTX3
CPI 272

JFS SYNTX3
LLI 340

CAL CONCT1

LLI 201

CAL LOOP
JFZ SYNTX1
LLI 203

LMI 000
RET

LLI 201
LBM
LLI 202
LMB

LLI 202

CAL GETCHR
JTZ SYNTX6

CPI 275

JTZ SYNTX7

CPI 250

JTZ SYNTXS8

CAL CONCTS
LLI 203

LMI 001

LHI 027

LLI 000

low the detailed source listing for this section
of the program as presented next starting at
the instruction labeled SYNTAX. The reader
may review from the flow chart as desired.

Clear the SYMBOL BUFFER area

Set L to start of LINE NUMBER BUFFER

** Set H to page of LINE NUMBER BUFFER
Initialize line number buff by placing zero as (cc)
Change pointer to syntax counter/pointer storage loc.
Set pointer to first character (after cc) in line buffer

Set pointer to syntax cntr/pntr storage location

Fetch the character pointed to by contents of syntax
Cntr/pntr from the line input buffer. If character was

A space, ignore. Else, test to see if character was ASCII
Code for a decimal digit. If not a decimal digit, consider
Line number to have been processed by jumping

Over the remainder of this SYNTX1 section.

If have decimal digit, set pointer to start of LINE
NUMBER BUFFER and append incoming digit there.

Reset L to syntax cntr/pntr storage location. Call sub-
Routine to advance pntr and test for end of input buffer
If not end of input buffer, go back for next digit

If end of buffer, only had a line number in the line.

Set pntr to TOKEN storage location. Set TOKEN = 000.
Return to caller.

Reset pointer to syntax cntr/pntr and fetch

Position of next character after the line number
Change pntr to SCAN pntr storage location

Store address when SCAN takes up after line number

Set pntr to SCAN pntr storage location

Fetch the character pointed to by contents of the SCAN
Pointer storage location. If character was ASCII code
For space, ignore. Else, compare character with ‘="’ sign
If is an equal sign, go set TOKEN for IMPLIED LET.
Else, compare character with left parenthesis ““ (

If left parenthesis, go set TOKEN for implied array LET
Otherwise, concatenate the character onto the string
Being constructed in the SYMBOL BUFFER. Now set
Up TOKEN storage location to an initial value of 001.
** Set H to point to start of KEYWORD TABLE.

Set L to point to start of KEYWORD TABLE.

SYNTX5,

SYNTXL,

SYNTXS,

SYNTX7,

SYNTXE,

BIGERR,

ERROR,

GETCHR,

LDI 026

LET 120

CAL STRCP
RTZ

CAL SWITCH

INL

LAM

NDI 300

JFZ SYNTXL
CAL SWITCH
LLI 203

LHI 026

LBM

INB

LMB

CAL SWITCH
LAB

CP1015

JFZ SYNTX5

LLI 202

LHI 026
CAL LOOP
JFZ SYNTX4
LLI 203

LMI 377
RET

LLI 203
LMI 015
RET

LLI 203
LMI 016
RET

LAI 302
LCI 307

CAL ECHO
LAC

CAL ECHO
JMP FINERR

LAM
CPI 120
JFS BIGERR

*#% Set D to page of SYMBOL BUFFER

Set E to start of SYMBOL BUFFER

Compare char string nresently in SYMBOL BUFFER
With entry in KEYWORD TABLE. Exit if match.
TOKEN will be set to keyword found. Else, switch

Pointers to get table address back and advance pntr to
KEYWORD TABLE. Now look for start of next entry
In KEYWORD TABLE by looking for (cc) byte which
Will NOT have a one in the two most sig. bits. Advance
Pntr til next entry found. Then switch pointers again so
Table pointer is in D&E. Put addr of TOKEN in L.

** And page of TOKEN in H. Fetch the value currently
In TOKEN and advance it to account for going on to
The next entry in the KEYWORD TABLE.

Restore the updated TOKEN value back to storage.
Restore the keyword table pointer back to H&L.

Put TOKEN count in ACC.

See if have tested all entries in the keyword table.

If not, continue checking the keyword table.

Set L to SCAN pointer storage location

** Set H to page of SCAN pointer storage location

Call routine to advance pntr & test for end of In buffer
Go back and add another character to SYMBOL BUFF
And search table for KEYWORD again. Unless reach
End of line input buffer. In which case set TOKEN=377
As an error indicator and exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 015 when ‘="’ sign found for IMPLIED LET.
Exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 016 when “(”’ found for IMPLIED array LET.
Exit to calling routine.

The following are subroutines used by SYNTAX and
other routines in SCELBAL.

Load ASCII code for letters B and G to indicate BIG
ERROR (For when buffer, stack, etc., overflows.)

Call user provided display routine to print ASCII code
In accumulator. Transfer ASCII code from C to ACC
And repeat to display error codes.

Go complete error message (AT LINE) as required.

Get pointer from memory location pointed to by H&L
See if within range of line input buffer
If not then have an overflow condition = error.

CLESYM,

CONCTA,

CONCTN,

CONCTS,

CONCT1,

CONCTE,

STRCP,

STRCPL,

LLA
LHI 026
LAM
CPI 240
RET

LLI 120
LHI 026
LMI 000
RET

CPI 301
JTS CONCTN
CPI 333
JTS CONCTS

CPI 260
JTS CONCTE
CPI 272
JFS CONCTE

LLI 120
LHI 026

LCM

INC

LMC

LBA

CAL INDEXC
LMB

LAI 000

RET

JMP SYNERR

LAM

CAL SWITCH
LBM

CPB

RFZ

CAL SWITCH

CAL ADV
LAM
CAL SWITCH

Else can use it as addr of character to fetch from the
** LINE INPUT BUFFER by setting up H too.

Fetch the character from the line input buffer.

See if it is ASCII code for space.

Return to caller with flags set according to comparison.

Set L to start of SYMBOL BUFFER.

** Set H to page of SYMBOL BUFFER.

Place a zero byte at start of SYMBOL BUFFER.
To effectively clear the buffer. Then exit to caller.

Subroutine to concatenate (append) a character to the
SYMBOL BUFFER. Character must be alphanumeric.

See if character code less than that for letter A.

If so, go see if it is numeric.

See if character code greater than that for letter Z.
If not, have valid alphabetical character.

Else, see if character in valid numeric range.
If not, have an error condition.

Continue to check for valid number.

If not, have an error condition.

If character alphanumeric, can concatenate. Set pointer
** To starting address of SYMBOL BUFFER.

Fetch old character count in SYMBOL BUFFER.
Increment the value to account for adding new
Character to the buffer. Restore updated (cc).

Save character to be appended in register B.

Add (cc) to address in H & L to get new end of buffer
Address and append the new character to buffer
Clear the accumulator

Exit to caller

If character to be appended not alphanumeric, ERROR!

Subroutine to compare character strings pointed to by
register pairs D & Eand H & L.

Fetch (cc) of first string.

Switch pointers and fetch length of second string (cc)
Into register B. Compare the lengths of the two strings.
If they are not the same

Return to caller with flags set to non-zero condition
Else, exchange the pointers back to first string.

Advance the pointer to string number 1 and fetch a
Character from that string into the accumulator.
Now switch the pointers to string number 2.

STRCPE,

STRCPC,

ADV,

LOOP,

STRIN,

STRIN1,

CAL ADV

CPM
RFZ
CAL SWITCH
DCB
JFZ STRCPL
RET

LAM
CAL SWITCH
JMP STRCPE

INL
RFZ
INH
RET

LBM
INB
LMB
LLI 000
LAM
DCB
CPB

LCI 000

CAL CINPUT
CPI 377

JFZ NOTDEL
LAI 334

CAL ECHO
DCC

JTS STRIN
CAL DEC
JMP STRIN1

Advance the pointer in line number 2.

Compare char in string 1 (ACC) to string 2 (memory)
If not equal, return to caller with flags set to non-zero
Else, exchange pointers to restore pntr to string 1
Decrement the string length counter in register B

If not finished, continue testing entire string

If complete match, return with flag in zero condition

Fetch character pointed to by pointer to string 1
Exchange pointer to examine string 2
Continue the string comparison loop

Subroutine to advance the two byte value in CPU regi-
sters H and L.

Advance value in register L.

If new value not zero, return to caller.
Else must increment value in H
Before returning to caller

Subroutine to advance a buffer pointer and test to see
if the end of the buffer has been reached.

Fetch memory location pointed to by H & L into B.
Increment the value.

Restore it back to memory.

Change pointer to start of INPUT LINE BUFFER
Fetch buffer length (cc) value into the accumulator
Make value in B original value

See if buffer length same as that in B

Return with flags yielding results of the comparison

The following subroutine is used to input characters
from the system’s input device (such as a keyboard)
into the LINE INPUT BUFFER. Routine has limited
editing capability included. (Rubout = delete previous
character(s) entered.)

Initialize register C to zero.

Call user provided device input subroutine to fetch one
Character from the input device. Is it ASCII code for
Rubout? Skip to next section if not rubout.

Else, load ASCII code for backslash intoc ACC.

Call user display driver to present backslash as a delete
Indicator. Now decrement the input character counter.
If at beginning of line do NOT decrement H and L.
Else, decrement H & L line pointer to erase previous
Entry, then go back for a new input.

NOTDEL,

STRINF,

SUBHL,

TEXTC,

TEXTCL,

CPI 203

JTZ CTRLC
CPI 215

JTZ STRINF
CPI 212

JTZ STRIN1
CAL ADV
INC

LMA

LAC
CP1120

JFS BIGERR
JMP STRIN1

LBC

CAL SUBHL
LMC

CAL CRLF
RET

LAL
SUB

LLA
RFC
DCH
RET

LCM
LAM
NDA
RTZ

CAL ADV
LAM

CAL ECHO
DCC

JFZ TEXTCL
RET

See if character inputted was ‘CONTROL C’

If so, stop inputting and go back to the EXECutive
If not, see if character was carriage-return

If so, have end of line of input

If not, see if character was line-feed

If so, ignore the input, get another character

If none of the above, advance contents of H & L
Increment the character counter

Store the new character in the line input buffer
Put new character count in the accumulator

Make sure maximum buffer size not exceeded

If buffer size exceeded, go display BG error message
Else can go back to look for next input

Transfer character count from C to B

Subtract B from H & L to get starting address of
The string and place the character count (cc) there
Provide a line ending CR & LF combination on the
Display device. Then exit to caller.

Subroutine to subtract contents of CPU register B from
the two byte value in CPU registers H & L.

Load contents of register L into the accumulator
Subtract the contents of register B

Restore the new value back to L

If no carry, then no underflow. Exit to caller.
Else must also decrement contents of H.

Before returning to caller.

Subroutine to display a character string on the system’s
display device.

Fetch (cc) from the first location in the buffer (H & L
Pointing there upon entry) into register B and ACC.
Test the character count value.

No display if (cc) is zero.

Advance pointer to next location in buffer
Fetch a character from the buffer into ACC
Call the user’s display driver subroutine
Decrement the (cc)

If character counter not zero, continue display
Exit to caller when (cc) is zero.

Subroutine to provide carriage-return and line-feed
combination to system’s display device. Routine also
initializes a column counter to zero. Column counter
is used by selected output routines to count the num-
ber of characters that have been displayed on a line.

CRLF,

DEC

b

DECNO,

INDEXB,

ECHO,

CINPUT,

LAI 215
CAL ECHO
LAI 212
CAL ECHO
LLI 043
LHI 001
LMI 001
LHD

LLE

RET

DCL

INL

JFZ DECNO
DCH

DCL

RET

LAL
ADB
LLA
RFC
INH

RET

LDH
LEL
LLI 043
LHI 001
LBM
INB
LMB
CAL T1F ¥1F
LHD
LLE
RET

IMP 1+ 1+

Load ASCII code for carriage-return into ACC

Call user provided display driver subroutine

Load ASCII code for line-feed into ACC

Call user provided display driver subroutine

Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER

Initialize COLUMN COUNTER to a value of one
Restore H from D (saved by ECHO subroutine)

Restore L from E (saved by ECHO subroutine)

Then exit to calling routine

Subroutine to decrement double-byte value in CPU
registers H and L.

Decrement contents of L

Now increment to exercise CPU flags

If L not presently zero, skip decrementing H
Else decrement H

Do the actual decrement of L

Return to caller

Subroutine to index the value in CPU registers H and L
by the contents of CPU register B.

Load L into the accumulator
Add B to that value

Restore the new value to L
If no carry, return to caller
Else, increment value in H
Before returning to caller

The following subroutine is used to display the ASCII
encoded character in the ACC on the system’s display
device. This routine calls a routine labeled CINPUT
which must be provided by the user to actually drive the
system’s output device. The subroutine below also in-
crements an output column counter each time it is used.

Save entry value of H in register D

And save entry value of L in register E

Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER
Fetch the value in the COLUMN COUNTER
And increment it for each character displayed
Restore the updated count in memory

F+ Call the user’s device driver subroutine
Restore entry value of H from D

Restore entry value of L from E

Return to calling routine

++ Reference to user defined input subroutine

5-10

STATEMENT INTERPRETATION

The reader has now been presented with
the knowledge of how SCELBAL utilizes an
Executive routine to store a user created
high level language program in memory. Ad-
ditionally, the reader has been shown how
the SYNTAX routine is used to analyze the
first portion of a line in order to obtain the
line number and to set up a token value re-
presenting the finding of a particular type of
statement in the beginning portion of a line.
(A line referring to a line of the source cod-
ing in the higher level language.) The reader
should now be prepared to learn how a pro-
gram stored in the user program buffer (or
a single line ‘“‘calculator mode” directive re-
siding in the line input buffer) is further
processed.

The flow chart on the next page will
once again illustrate how the program con-
tinues to operate in a straightforward, con-
ceptually simple manner. It illustrates that
when the Executive interprets a. RUN com-
mand, the program proceeds to perform
operations in the following fashion.

The first line stored in the user program
buffer is pulled into the line input buffer.
Then the SYNTAX subroutine is used to
find out what type of statement is contained
in the line. A TOKEN value representing the
type of statement found is returned by the
SYNTAX subroutine. This token value is
then used to direct the program to go to a
particular routine that will perform the type
of operation dictated by the statement type.
It is as simple as that!

There is then a whole series of routines,
one for each type of statement used in the
language, that processes the remaining data on
a line after the statement keyword. This chap-
ter will present the details for each of these
routines.

When the execution of a statement rout-
ine has been completed, the program con-

tinues by simply extracting the next line of
information stored in the user program buf-
fer and repeating the process.

In the DIRECT, or ‘“calculator’’ mode,
the program simply restricts its operation to
processing the line of information stored in
the input line buffer, instead of extracting
lines from the user program buffer. The read-
may observe that the RUN flow chart shows
several entry points to various subsections of
the program. The reader can see that there is
a DIRECT entry to the routine which is used
when the program is interpreting a single line
statement in the “calculator’” mode.

The reader might also note that there are
two special entry points in the RUN routine
named NXTLIN and SAMLIN. The first entry
point is used when the program has finished
the execution of a statement and is to pro-
ceed to interpret the next line of information
in the user program buffer. The second entry
point is used in special situations which will
be explained more fully later in this chapter.
One such case is when the program has exe-
cuted a GOTO statement. This is because, the
routine that processes a GOTO statement will
search for the line number in the user pro-
gram buffer that was specified in the GOTO
directive. When it finds that line number, the
program will already have the user program
buffer pointer set up to point to the line that
should be processed next!

The various statement routines presented
in this chapter will call on subroutines whose
functions will be described in detail in follow-
ing chapters. However, the reader should be
able to discern the essential operations of
each type of statement as they are presented.
The supplementary subroutines will fall into
logical order once the information in this
chapter has been digested and is understood.

The source listing for the RUN routine and
associated subsections of that routine are pre-
sented immediately following the flow chart.

RUN

INITIALIZE POINTERS
AND COUNTERS

NXTLIN

SET POINTER TO NEXT LINE
IN USER PROGRAM BUFFER

SAMLIN

DIRECT

TRANSFER LINE IN USER
PROGRAM BUFFER INTO
LINE INPUT BUFFER

[CALL SYNTAX SUBROUTINE]

SEE IF TOKEN VALUE
RETURNED BY SYNTAX SUB-
ROUTINE IS VALID

NO YES

[SYNTAX ERROR]

GO TO APPROPRIATE
STATEMENT ROUTINE

RUN,

NXTLIN,

SAMLIN,

LLI 073
LHI 027
LMI 000
LLI 205
LMI 000
LLI 360
LHI 026
LMI 033
INL
LMI 000
JMP SAMLIN

LLI 360
LHI 026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI 360
LHI 026
LMD
INL
LME
LLI 340
LHI 026
LAM
NDA
JTZ EXEC
LAA
LAA

LLI 360

LHI 026
LCM

INL

LLM

LHC

LDI 026

LEI 000
CAL MOVEC
LLI 000

LHI 026
LAM

NDA

JTZ EXEC
CAL SYNTAX

Load L with addr of GOSUB/RETURN stack pointer
#* J,oad H with page of same pointer

Initialize the GOSUB/RETURN stack pointer to zero
Load L with addr of FOR/NEXT stack pointer
Initialize the FOR/NEXT stack pointer to zero

Load L with addr of user pgm buffer line pointer

** Load H with page of user pgm buffer line pointer
T+ Initialize pointer (may be altered by user)
Advance memory pointer to low portion of user pgm
Buffer pointer and initialize to start of buffer

Start executing user program with first line in buffer

Load L with addr of user program buffer line pointer
Load H with page of user pgm buffer line pointer
Place page addr of pgm buffer line pointer in D
Advance the memory pointer

Place low addr of pgm buffer line pointer in E

Also put page addr of pgm buffer line pointer in H
And low addr of pgm buffer line pointer in L

Now fetch the (cc) of current line into register B
Add one to account for (cc) byte itself

Add value in B to D&E to point to next line in

User program buffer. Reset L. to addr of user ogm
** Buffer pointer storage location. Store the new
Updated user pgm line pointer in pointer storage
Location. Store both the high portion

And low portion. (Now points to next line to be
Processed from user program buffer.) Change pointer
** To address of line number buffer. Fetch the last
Line number (length) processed. Test to see if it was
Blank. If it was blank

Then stop processing and return to the Executive
Insert two effective NOPs here

In case of patching

Load L with addr of user program buffer line pointer
** Load H with page of same pointer

Fetch the high portion of the pointer into register C
Advance the memory pointer

Fetch the low portion of the pointer into register L
Now move the high portion into register H

** Set D to page of line input buffer

Set E to address of start of line input buffer

Move the line from the user program buffer into the
Line input buffer. Now reset the pointer to the start
#* Of the line input buffer.

Fetch the first byte of the line input buffer (cc)
Test (cc) value to see if fetched a blank line

If fetched a blank line, return to the Executive

Else call subrtn to strip off line nr & set statement token

DIRECT, LLI203

LHI 026
LAM

CPI 001

JTZ NXTLIN
CPI 002

JTZ IF

CPI 003

JTZ LET

CPI 004

JTZ GOTO
CP1 005

JTZ PRINT
CPI 006

JTZ INPUT
CPI 007

JTZ FOR

CPI 010

JTZ NEXT
CPI 011

JTZ GOSUB
CPI 012

JTZ RETURN
CP1 013

JTZ DIM

CPI 014

JTZ EXEC
CPI 015

JTZ LETO
CPI 016

JFZ SYNERR
CAL ARRAY1
LLI 206

LHI 026

LBM

LLI 202

LMB

CAL SAVSYM
JMP LET1

Load L with address of syntax TOKEN storage location
Load H with page of syntax TOKEN location
Fetch the TOKEN value into the accumulator

Is it token value for REM statement? If so, ignore the
Current line and go on to the next line in pgm buffer.
Is it token value for IF statement?

If yes, then go to the IF statement routine.

Is it token value for LET statement? (Using keyword)
If yes, then go to the LET statement routine.

Is it token value for GOTO statement?

If yes, then go to the GOTO statement routine.

Is it token value for PRINT statement?

If yes, then go to the PRINT statement routine.

Is it token value for INPUT statement?

If yes, then go to the INPUT statement routine.

Is it token value for FOR statement?

If yes, then go to the FOR statement routine.

Is it token value for NEXT statement?

If yes, then go to the NEXT statement routine.

Is it token value for GOSUB statement?

If yes, then go to the GOSUB statement routine.

Is it token value for RETURN statement?

If yes, then go to the RETURN statement routine.

Is it token value for DIM statement?

If yes, then go to the DIM statement routine.

Is it token value for END statement?

If yes, then go back to the Executive, user pgm finished!
Is it token value for IMPLIED LET statement?

If yes, then go to special LET entry point.

@@ Ts it token value for ARRAY IMPLIED LET?

If not, then assume a syntax error condition.

@@ Else, perform array storage set up subroutine.
@@ Set L to array pointer storage location.

@@ ** Set H to array pointer storage location.

@@ Fetch array pointer to register B.

@@ Change memory pointer to syntax pntr storage loc.
@@ Save array pointer value there.

@@ Save array name in auxiliary symbol buffer

@@ Go to special array implied LET entry point.

THE PRINT STATEMENT ROUTINE

The PRINT statement routine is used to

double (“.......) quotation marks on the line

output data as directed by the creator of a
SCELBAL program. There are several types
of information that the PRINT statement
can display. It can display text messages
that have been enclosed by single (“....... ’) or

containing the PRINT statement. It is also
used to display the numerical values of
variables or expressions referred to in the
line containing the PRINT directive. Fin-
ally, the PRINT statement may be used to

TAB (space over) to a TABBING POSITION
(every sixteenth column) and control the
occurrence of a line-feed and carriage-return
combination after the displaying of infor-
mation. (The PRINT statement may also be
used to perform two special functions that
will be explained in a later chapter. These
relate to the capability to TAB to a specific
column position specified by the user, and
the capability to display a certain range of
numbers as an alphanumeric character
through the use of the CHR function.)

The PRINT routine is split into two major
sections. The first section is primarily con-
cerned with determining whether the state-
ment line requires the outputting of text in-
formation (enclosed in single or double
guotation marks) or the displaying of the
value of an expression. If the value of an ex-
pression is to be displayed, the program calls
on relevant portions of SCELBAL to obtain
the value to be outputted and then displays
the value. The second section of the PRINT
routine starts with the label QUOTE. It is
used to display text information enclosed by
quotation marks in the PRINT statement
line.

PRINT, LLI 202

Since a PRINT statement line can contain
both expressions and text strings, the routine
essentially operates by splitting the line into
appropriate fields and processing each field
independently, either outputting the value
of an expression, or a text string as required.

The flow chart on the next two pages il-
lustrates the key portions of the first section
of the PRINT routine. The source listing for
this section starts below. The QUOTE portion
of the routine is then presented along with it
flow chart. The reader may note that the
QUOTE portion of the routine may direct
program operation back to the first section
when it is finished processing a text field.
This is indicated in the QUOTE flow chart
by the exit point marked A which refers to
the A entry point in the PRINT flow chart.

The PRINT routine may at first appear
somewhat complicated because a good deal
of pointer manipulation is required by the
routine as it analyzes fields within a line.
Reference to the flow charts will show,
though, that its operation is really quite
straightforward in concept.

Load L with address of SCAN pointer storage location

LHI 026 ** Load H with page of SCAN pointer

LAM Fetch the pointer value (last character scanned by the
LLI 000 SYNTAX routine). Change pointer to line buffer (cc).
CPM Compare pointer value to buffer length. If not equal
JTS PRINT1 Then line contains more than stand alone PRINT state-
CAL CRLF Ment. However, if just have PRINT statement then issue

JMP NXTLIN

A carriagereturn & line-feed combination, then exit.

PRINT1, CALCLESYM Initialize the SYMBOL buffer for new entry.

LLI 202 Load L with address of SCAN buffer pointer

LHI 026 ** Load H with page of SCAN pointer

LBM Pointer points to last char scanned by SYNTAX. Need

INB To increment it to point to next char in statement line.
LLI 203 Load L with address of former TOKEN value. Use it as
LMB Storage location for a PRINT statement pointer.

PRINTZ2, LLI 203

Set memory pointer to PRINT pointer storage location

CAL GETCHR Fetch character in input buffer pointed to by PRINT

CPI 247"

Pointer. See if it is ASCII code for single quote mark.

SEE IF STAND ALON
PRINT STATEMENT

YES

ADV LINE BUFFER POINTER

AND FETCH NEXT CHARACTER

YES

[DISPLAY CR & LF]

NO YES

QUOTE

[SET UP EVALUA

[EVALUATE CURRENT FIELD]

TOR POINTERS]

SEE IF EVALUATOR REVEALED

TAB OR CHR FUNCTION

NO YES

DISPLAY VALUE OF THE
EXPRESSION EVALUATED

A

9

~N

A

TAB OR CHR FUNCTION WOULD
HAVE DISPLAYED AS DIRECTED

SEE IF LAST CHARACTER
SCANNED WAS A COMMA

YES

PROVIDE SPACES TO NEXT
TABBING POSITION IN LINE

SEE IF HAVE FINISHED
PROCESSING THE
STATEMENT LINE

Q NO YES
A 2

SEE IF LAST CHARACTER
IN THE STATEMENT LINE
WAS A COMMA OR SEMI-COLON

NO YES

|DISPLAY CR & LF]

JTZ QUOTE If so, go to QUOTE section to process text string.

CPI 242 If not, see if it is ASCII code for double quote mark.
JTZ QUOTE If so, go to QUOTE section to process text string.

CPI 254 If not, see if it is ASCII code for comma sign.

JTZ PRINT3 If so, go evaluate expression.

CPI 273 If not, see if it is ASCII code for semi-colon sign.

JTZ PRINT3 If so, go evaluate expression.

LLI 203 Load L with address of PRINT pointer storage location.
CAL LOOP Increment pointer and test for end of line.

JFZ PRINT2 If not end of line, fetch the next character.

6-7

PRINTS,

PRINT4,

PRINTS5,

PRINTS,

LLI 202
LBM

INB

LLI 276
LMB

LLI 203
LBM

DCB

LLI 277
LMB

LLI 367
LAM

NDA

JTZ PRINT4
LMI 000
JMP PRINT6

CAL EVAL
LLI177
LHI 026
LAM

NDA

LLI 110
LHI 001
LMI 377
CTZ PFPOUT
LLI 177
LHI 026
LMI 000

LLI 203

CAL GETCHR
CPI 254

CTZ PCOMMA
LLI 203

LHI 026

LBM

LLI 202

LMB

LLI 000

LAB

CPM

JTS PRINT1
LLI 000

CAL GETCHR
CPI 254

JTZ NXTLIN
CPI 273

JTZ NXTLIN
CAL CRLF
JMP NXTLIN

Load L with address of SCAN pointer storage location
Fetch value of the pointer (last letter of KEYWORD)
Add one to point to first character of expression

Load L with addr of EVAL pointer storage location
Store addr at which EVAL should start scanning

Load L with address of PRINT pointer

Which points to field terminator

Decrement pointer value to last character of expression
Load L with address of EVAL FINISH pntr storage loc.
Place address value of last char in PRINT field there
Load L with address of QUOTE flag

Fetch the value of the QUOTE flag into the ACC

Test the QUOTE flag status

If field not quoted, proceed to evaluate expression

If field quoted, then clear the QUOTE flag for next field
And skip the evaluation procedure

Evaluate the current PRINT field

Then load L with address of the TAB flag

L,oad H with the page of the TAB flag
Fetch the value of the TAB flag into the accumulator
Test the TAB flag

Change L to the FIXED/FLOAT flag location
** Change H to the FIXED/FLOAT flag page
Set FIXED/FLOAT flag to fixed point

If TAB flag not set, display value of expression
Load L with address of TAB flag

** Load H with page of TAB flag

Reset TAB flag for next PRINT field

Load L with address of PRINT pointer storage location
Fetch the character pointed to by the PRINT pointer
See if the last character scanned was a comma sign

If so, then display spaces to next TAB location

Reset L to address of PRINT pointer storage location
** Reset H to page of PRINT pointer storage location
Fetch the value of the pointer into register B

Change L to SCAN pointer storage location

Place end of last field processed into SCAN pointer
Change pointer to start of line input buffer

Place pntr to last char scanned into the accumulator
Compare this value to the (cc) for the line buffer

If not end of line, continue to process next field

If end of line, fetch the last character in the line

And check to see if it

Was a comma. If it was, go on to the next line in the
User program buffer without displaying a CR & LF.
If not a comma, check to see if it was a semi-colon.
If so, do not provide a CR & LF combination.

If not comma or semi-colon, provide CR & LF at end
Of a PRINT statement. Go process next line of pgm.

6-8

INITIALIZING PROCEDURES

BUFFER AND

FETCH A CHARACTER FROM

SEEIFITIS A

' OR ” FOR END OF QUOTE

DISPLAY THE
CHARACTER

[ADVANCE POINTER TO NEXT
CHARACTER IN THE LINE

[SEE IF AT END OF THE LINE]

NO

N

<
S

YES

ERROR

SEEIF ’ OR ” IS AT
THE END OF THE LINE

P\

NO :: YES
? .

6-9

QUOTE,

QUOTEL,

QUOTER,

QUOTEZ2,

PFPOUT,

LLI 367

LMA

CAL CLESYM
LLI 203

LBM

INB

LLI 204

LMB

LLI 204

CAL GETCHR
LLI 367

CPM

JTZ QUOTE2
CAL ECHO
LLI 204

CAL LOOP
JFZ QUOTE1L

LAI 311
LCI 321
LLI 367
LHI 026
LMI 000
JMP ERROR

LLI 204
LBM

LLI 202
LMB

LAB

LLI 000
CPM

JFZ PRINT1
CAL CRLF
LLI 367
LHI 026
LMI 000
JMP NXTLIN

LLI126
LHI 001
LAM
NDA

JTZ ZERO
INL

Load L with address of QUOTE flag

Store type of quote in flag storage location
Initialize the SYMBOL buffer for new entry
Load L with address of PRINT pointer

Fetch the PRINT pointer into register B

Add one to advance over quote character

Load L with address of QUOTE pointer

Store the beginning of the QUOTE field pointer

Load L with address of QUOTE pointer

Fetch the next character in the TEXT field

Load L with the QUOTE flag (type of quote)
Compare to see if latest character this quote mark
If so, finish up this quote field

If not, display the character as part of TEXT
Reset L to QUOTE pointer storage location
Increment QUOTE pointer and test for end of line
If not end of line, continue processing TEXT field

If end of line before closing quote mark have an error
So load ACC with I and register C with Q

Load L with the address of the QUOTE flag

** Load H with the page of the QUOTE flag

Clear the QUOTE flag for future use

Go display the IQ (Illegal Quote) error message

Load L with address of QUOTE pointer

Fetch the QUOTE pointer into register B

Load L with address of SCAN pointer storage location
Store former QUOTE pointer as start of next field
Place QUOTE pointer into the accumulator
Change L to point to start of the input line buffer
Compare QUOTE pointer value with (cc) value

If not end of line, process next PRINT field

Else display a CR & LF combination at end of line
Load L with the address of the TAB flag

** Load H with the page of the TAB flag

Clear the TAB flag for future use

Go process next line of the program.

The following subroutines are utilized by the PRINT
routine.

Load L with the address of the FPACC MSW (Floating
** Point ACC). Load H with page of the FPACC MSW.
Fetch the FPACC MSW into the accumulator. Test to
See if the FPACC MSW is zero. If so, then simply go and
Display the value “0”’

Else advance the pointer to the FPACC Exponent

6-10

ZERO,

FRAC,

PCOMMA,

LAM

NDA

JTZ FRAC
JMP FPOUT

LATI 240
CAL ECHO
LAY 260
JMP ECHO

LLI110
LMI 000
JMP FPOUT

LLI 000
LAM
LLI 203
SUM

Fetch the FPACC Exponent into the accumulator

See if any exponent value. If not, mantissa is in range

0.5 to 1.0. Treat number as a fraction.
Else perform regular numerical output routine.

Load ASCII code for space into the ACC
Display the space

Load ASCII code for 0 into the ACC
Display 0 and exit to calling routine

Load L with address of FIXED/FLOAT flag
Reset it to indicate floating point mode
Display floating point number and return to caller

Load L with address of (cc) in line input buffer
Fetch the (cc) for the line into the ACC

Change pointer to PRINT pointer storage location
Subtract value of PRINT pointer from line (cc)

RTS
LLI 043
LHI 001
LAM
NDI 360
ADI 020
SUM
LCA
LAI 240
PCOM1, CAL ECHO
DCC
JFZ PCOM1
RET

If at end of buffer, do not TAB

If not end, load L with address of COLUMN COUNTER
*% Set H to page of COLUMN COUNTER

Fetch COLUMN COUNTER into the accumulator

Find the last TAB position (multiple of 16 decimal)
Add 16 (decimal) to get new TAB position

Subtract current position from next TAB position

Store this value in register C as a counter

Load the ACC with the ASCII code for space

Display the space

Decrement the loop counter

Continue displaying spaces until loop counter is zero
Then return to calling routine

THE LET STATEMENT ROUTINE

The LET statement is used to set a variable
equal to the value of another variable, an ex-
pression, or a specific number. This is illus-
trated by the following examples.

LET X=Y
or
LET X = (Y*2 + 3*Y + 4)*(N - M)
or

LET X =3.14159

The operation of the LET routine simply
consists of defining the variable on the left

hand side of the equal sign in a statement
line (by defining, it is meant determining
what character(s) are being used to repre-
sent the variable) and then calculating the
value of the expression contained on the
right hand side of the equal sign. This value
is then stored along with the variable in a
variables symbol table.

The operation of the LET statement
routine is summarized in the flow chart
shown on the next page. The source listing
for the routine is then presented.

LET

[INITTALIZING PROCEDURES]

EXAMINE NEXT CHARACTER
IN THE LINE BUFFER FOR AN
EQUAL (=) SIGN

NO

NE S
FIND ONE?

NO END YES

EVALUATE THE EXPRESSION

AFTER THE EQUAL SIGN

STORE THE VALUE OF THE
EXPRESSION EVALUATED
FOR THE VARIABLE DEFINED

NXTLIN

ERROR

BUFF?

APPEND CHARACTER TO THE
AUXILIARY SYMBOL BUFFER

ADVANCE LINE
BUFFER POINTER

A

LETO,

LET,

LET1,

LET2,

LETS,

LET4,

LETERR,

LET5,

CAL SAVSYM
LLI 202

LHI 026

LBM

LLI 203

LMB

JMP LETS5

CAL CLESYM
LLI 144
LHI 026
LMI 000

LLI 202
LHI 026
LBM
INB
LLI 203
LMB

LLI 203

CAL GETCHR
JTZ LET4
CPI 275

JTZ LETS
CPI 250

JFZ LET3
CAL ARRAY
LLI 206

LHI 026
LBM

LLI 203
LMB

JMP LET4

LLI 144
LHI 026
CAL CONCT1

LLI 203
CAL LOOP
JFZ LET2

LAI 314
LCI 305
JMP ERROR

LLI 203
LHI 026
LBM
INB

Entry point for IMPLIED LET statement. Save the
Variable (to left of the equal sign). Set L. to the SCAN
** Pointer. Set H to the page of the SCAN pointer.
Fetch value of SCAN pointer. (Points to = sign in In bf)
Change pointer to LET pointer (was TOKEN value)
Place the SCAN pointer value into the LET pointer
Continue processing the LET statement line

Initialize the SYMBOL BUFFER for new entry

Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Initialize AUX SYMBOL BUFFER

Entry point for ARRAY IMPLIED LET statement.
** Set pointer to SCAN pointer storage location
Fetch the SCAN pointer value (last letter scanned by
SYNTAX subroutine) and add one to next character
Change L to LET pointer storage location

Store former SCAN value (updated) in LET pointer

Set L to storage location of LET pointer

Fetch the character pointed to by the LET pointer

If character is a space, ignore it

See if character is the equal (=) sign

If so, go process other side of the statement (after =)
@@ Tf not, see if character is a right parenthesis “(”’
If not, continue looking for equal sign

@@ If so, have subscript. Call array set up subroutine.
@@ Load L with address of ARRAY pointer

@@ ** [,oad H with page of ARRAY pointer

@@ Fetch value (points to ‘)’ character of subscript)
@@ Load L with address of LET pointer

@@ Place ARRAY pointer value as new LET pointer
@@ Continue to look for = sign in statement line

Reset L to start of AUX SYMBOL BUFFER
** Load H with page of AUX SYMBOL BUFFER
Concatenate character to the AUX SYMBOL BUFFER

Load L with address of LET pointer storage location
Add one to pointer and test for end of line input buffer
If not end of line, continue looking for the equal sign

If do not find an equal sign in the LET statement line
Then have a LE (Let Error). Load the code for L and E
Into registers ACC and C and go display the error msg.

When find the equal sign, reset L to point to the LET
** Pointer and H to the proper page. Fetch the pointer
Value into register B and add one to advance pointer
Over the equal sign to first char in the expression.

N
'

—

(@]

LLI 276

LMB

LLI 000

LBM

LLI 277

LMB

CAL EVAL
CAL RESTSY
CAL STOSYM
JMP NXTLIN

Set L to point to the address of the EVAL pointer

Set EVAL pointer to start evaluating right after the
Equal sign. Now change L to start of line input buffer.
Fetch the (cc) value into register B. (Length of line.)
Load L with EVAL FINISH pointer storage location.
Set it to stop evaluating at end of the line.

Call the subroutine to evaluate the expression.
Restore the name of the variable to receive new value.
Store the new value for the variable in variables table.
Go process next line of the program.

THE GOTO STATEMENT ROUTINE

The GOTO statement is one of the easiest
statements to process even though the source
listing is somewhat longer than the LET
routine just described. The reason for the
relatively lengthy source listing is because a
lot of pointer manipulation is required. Con-
ceptually, the process involves nothing more
than searching the user program buffer for

the line containing the line number specified
as part of the GOTO statement. Once it is
located, the program simply continues exe-
cuting the high level program with that line!

The source listing for the GOTO statement
is presented below. The reader may correlate
it with the flow chart on the next page.

GOTO,

GOTO1,

GOTOZ2,

LLI 350
LHI 026
LMI 000
LLI 202
LBM
INB
LLI 203
LMB

LLI 203

CAL GETCHR
JTZ GOTO2
CPI 260

JTS GOTO3
CPI 272

JFS GOTO3
LLI 350

CAL CONCT1

LLI 203
CAL LOOP
JFZ GOTO1

Load L with start of AUX LINE NR BUFFER

*#% Load H with page of AUX LINE NR BUFFER
Initialize the AUX LINE NR BUFFER to zero

Load L with address of SCAN pointer storage location
Fetch pointer value (last char scanned by SYNTAX)
Add one to skip over the last O in GOTO keyword
Change pointer to GOTO pointer (formerly TOKEN)
Store the updated SCAN pointer as the GOTO pointer

Load L with address of GOTO pointer

Fetch the character pointed to by the GOTO pointer
If character was a space, ignore it

See if character is in the range of a decimal digit

If not, must have end of the line number digit string
Continue to test for decimal digit

If not, must have end of the line number digit string
If valid decimal digit, load L with addr of AUX LINE
NR BUFFER and concatenate digit to the buffer.

Reset pointer to GOTO pointer storage location
Advance the pointer value and test for end of line
If not end of line, fetch next digit in GOTO line number

6-14

GOTO

[INITIALIZING PROCEDURES]

FETCH THE LINE NUMBER
REFERRED TO BY THE GOTO
STATEMENT INTO THE
AUXILIARY LINE NUMBER

BUFFER

SET POINTERS TO START OF
USER PROGRAM BUFFER

FETCH THE LINE NUMBER OF
THE LINE POINTED TO IN THE
USER PROGRAM BUFFER INTO

THE SYMBOL BUFFER

SEE IF THIS NUMBER IS EQUAL

TO THE ONE IN THE AUXILIARY

LINE NUMBER BUFFER

NO YES
?

ADVANCE POINTER TO START
OF NEXT LINE IN THE USER
PROGRAM BUFFER

\/

USER PROGRAM BUFFER
POINTER IS NOW SET TO
THE START OF THE LINE
SPECIFIED BY THE GOTO
STATEMENT!

ERROR

GOTO3,

GOTO4,

GOTOS5,

GOTO6,

GOTO7,

LLI 360
LHI 026
LMI 033
INL

LMI 000

CAL CLESYM
LLI 204
LMI 001

LLI 204

CAL GETCHP
JTZ GOTO6
CPI 260

JTS GOTO7
CPI 272

JFS GOTO7
CAL CONCTS

LLI 204
LHI 026
LBM
INB
LMB
LLI 360
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GOTO5

LLI 120

LHI 026
LDI 026

LEI 350
CAL STRCP
JTZ SAMLIN
LLI 360

LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360

Set L to user program buffer pointer storage location
** Set H to page of program buffer pointer

F7 Initialize high part of pointer to start of pgm buffer
Advance the memory pointer

Initialize the low part of pointer to start of pgm buffer

Clear the SYMBOL BUFFER
Load L with address of GOTO SEARCH pointer
Initialize to one for first char of line

Load L with address of GOTO SEARCH pointer

Fetch character pointed to by GOTO SEARCH pointer
From line pointed to in user program buffer. Ignore
Spaces. Check to see if character is a decimal digit.

If not, then have processed line number at the start of
The current line. Continue the check for a valid decimal
Digit. If have a decimal digit then concatenate the digit
Onto the current string in the SYMBOL BUFFER.

Change L to the address of the GOTO SEARCH pointer
** And H to the proper page of the pointer

Fetch the GOTO SEARCH pointer value

Increment the GOTO SEARCH pointer

And restore it back to memory

Change L to address of user program buffer pointer

Save the high part of this pointer value in register C
Advance L to the low part of the pgm buffer pointer
Now load it into L

And transfer C into H to point to start of the line

Fetch the (cc) of the current line being pointed to in the
User pgm buff. Decrement B to previous value. Compare
GOTO SEARCH pointer value to length of current line.
If not end of line then continue getting current line nr.

Load L with address of start of the SYMBOL BUFFER
Set H to the page of the SYMBOL BUFFER

** Set D to the page of the AUX LINE NR BUFFER
Set E to the start of the AUX LINE NR BUFFER
Compare GOTO line number against current line nr.

If they match, found GOTO line. Pick up ops there!
Else, set L to user program buffer pntr storage location
** Set H to page of user program buffer pointer

Fetch the high part of this pointer into register D
Advance the memory pointer

Fetch the low part into register E

Transfer the pointer to H

And L. Fetch the (cc) of the current line into register
B and then add one to account for the (cc) byte to get
Total length of the current line in the user pgm buffer
Add the total length to the pointer value in D & E

To get the starting address of the next line in the user

6-16

LHI 026

LMD

INL

LME

LLI 364

LAD

CPM

JFZ GOTO4

INL

LAE

CPM

JFZ GOTO4
GOTOER, LAI 325
LCI 316
JMP ERROR

** User program buffer. Place the new value for the user
Program buffer pointer back into the user program
Buffer pointer storage locations so that it points to the
Next line to be processed in the user program buffer.
Load L with address of end of user pgm buffer storage
Location (page address) and fetch end of buffer page.
Compare this with next line pointer (updated).

If not end of buffer, keep looking for the specified line
If have same page addresses, check the low address
Portions to see if

Have reached end of user program buffer

If not, continue looking. If end of buffer without

Finding specified line, then have an error condition.
Load ACC and register C with code for ““UN’’ and go
Display “Undefined Line”” error message.

THE IF STATEMENT ROUTINE

The IF statement routine is a little more
complicated than most statement routines
presented so far. This is because the state-
ment line may take several forms. The typical
forms the IF statement may appear in are
illustrated here:

IF X = Y+2 GOTO 120
or
IF X =Y+2 THENv120
or
IF X = Y+2 THEN Z = 3.14159

The first two examples of the IF statement
format are relatively straightforward. If the
specified condition is not met, the user pro-
gram simply continues with the next high
level statement in the program. If the condi-
tion is satisfied, the program simply proceeds
directly to the line number specified after the
GOTO or THEN directive.

The third example effectively results in a
line of the user’s high level program contain-

-17

ing two statements. The first statement in the
example is the IF directive, the second is an
IMPLIED LET provided that the IF condi-
tion is satisfied.

It should be noted that the IMPLIED LET
part of the line in the example could be re-
placed by other types of SCELBAL state-
ments.

The processing of an IF statement is out-
lined in the flow chart shown on the next
several pages. The case where a line number
follows the THEN or GOTO directive in the
statement is handled effectively as a JUMP to
the designated line number in the user pro-
gram buffer. The case where another state-
ment follows the THEN directive is handled
as if the program actually was processing a
new line of the higher level program except
that the line number remains the same as
that used for the originating IF statement!

The reader may refer to the flow chart
when necessary to understand the operation
of this portion of SCELBAL while studying
the source listing of the IF statement routine.

ERROR

|INITIALIZING PROCEDURES]

[SET UP EVALUATOR POINTERS]

LOOK FOR “THEN” DIRECTIVE
IN THE CURRENT LINE

NO FIND

“THEN”

9

YES

LOOK FOR “GOTO” DIRECTIVE
IN THE CURRENT LINE

NO FIND YES

“GOTO”

?

CALL SUBROUTINE TO
EVALUATE THE “IF”
EXPRESSION

{SEE IF THE CONDITION FAILED]

NO 9\ YES

LOOK FOR CHARACTER STRING
AFTER “THEN” OR “GOTO” IN
THE CURRENT STATEMENT LINE

NXTLIN

IF,

SEE IF IT BEGINS WITH
A NUMERIC CHARACTER

YES

GOTO

|[HAVE ANOTHER STATEMENT]

MOVE THE NEW STATEMENT
INTO THE PROPER POSITION
IN THE LINE INPUT BUFFER
SO THAT IT EMULATES THE
PRESENCE OF A NEW
STATEMENT LINE

CALL THE SYNTAX SUBROUTINE
AT A SPECIAL ENTRY POINT
TO GET A NEW TOKEN VALUE

GO PERFORM THE NEW STATE-
MENT AS DIRECTED BY THE
NEW TOKEN VALUE

LLI 202
LHI 026
LBM

INB

LLI 276
LMB

CAL CLESYM
LLI 320
LHI 001
CAL INSTR
LAE

NDA

JFZ IF1
LLIO13
LHI 027
CAL INSTR

Set L to SCAN pointer storage location.

** [,oad H to page of SCAN pointer storage location.
Fetch the SCAN pointer value to register B.

Add one to advance pointer over last char scanned.
Change L to address of EVAL pointer. Set up EVAL
Pointer to begin evaluation with next char in the line.
Clear the SYMBOL BUFFER.

Set L to starting address of THEN in look-up table.

** Set H to page of the look-up table.

Search for occurrence of THEN in the line input buffer.
Transfer register E to ACC. If THEN not found

The value in E will be zero.

If THEN found, can evaluate the IF expression.

If THEN not found, set L to starting address of GOTO
** In the KEYWORD look-up table. Set H to table
Search for occurrence of GOTO in the line input buffer.

6-19

IFERR,

IF1,

1F2,

IF3,

IF4,

LAE
NDA
JFZ IF1

LAI 311
LCI 306
JMP ERROR

LLI 277
LHI 026
DCE

LME

CAL EVAL
LLI 126
LHI 001
LAM

NDA

JTZ NXTLIN
LLI 277
LHI 026
LAM

ADI 005
LII 202
LMA

LBA

INB

LLI 204
LMB

LLI 204

CAL GETCHR
JFZ IF3

LLI 204

CAL LOOP
JFZ IF2

JMP IFERR

CPI 260
JTS IF4
CPI 272
JTS GOTO

LLI 000
LAM
LLI 204
SUM
LBA
INB
LCM
LLI 000
LMB

Transfer E to ACC. If GOTO not found
The value in E will be zero.
If GOTO found, can evaluate the IF expression.

Set ASCII code for letter I in ACC
And code for letter F in register C
Go display the IF error message

Load L with addr of EVAL FINISH pointer storage loc
#* [,oad H with page of storage location

Subtract one from pointer in E and set the EVAL
FINISH pointer so that it will evaluate up to the THEN
Or GOTO directive. Evaluate the expression.

Load L with address of FPACC Most Significant Word
** Load H with page of FPACC MSW

Fetch the FPACC MSW into the accumulator

Test the value of the FPACC MSW

If it is zero, IF condition failed, ignore rest of line.

If not, load L with addr of EVAL FINISH pointer

** Set H to the appropriate page

Fetch the value in the EVAL FINISH pointer

Add five to skip over THEN or GOTO directive
Change L to SCAN pointer storage location

Set up the SCAN pointer to location after THEN or
GOTO directive. Also put this value in register B.

Add one to the value in B to point to next character
After THEN or GOTO. Change L to addr of THEN pntr
Storage location and store the pointer value.

Load L with the address of the THEN pointer

Fetch the character pointed to by the THEN pointer
If character is not a space, exit this loop

If fetch a space, ignore. Reset L to the THEN pointer
Add one to the THEN pointer and test for end of line
If not end of line, keep looking for a character other
Than a space. If reach end of line first, then error

When find a character see if it is numeric.

If not numeric, then should have a new type of
Statement. If numeric, then should have a line number.
So process as though have a GOTO statement!

Load L with addr of start of line input buffer.

Fetch the (cc) byte to get length of line value.

Change L to current value of THEN pointer (where first
Non-space char. found after THEN or GOTO). Subtract
This value from length of line to get remainder. Now
Have length of second statement portion. Add one for
(cc) count. Save THEN pointer value in register C.
Reset L to start of line input buffer. Now put length of
Second statement into (cc) position of input buffer.

6 -20

LLC Set L to where second statement starts.

LDI 026

LEI 001

CAL MOVEIT
LLI 202

LMI 001

CAL SYNTX4
JMP DIRECT

** Set D to page of line input buffer.

Set E to first character position of line input buffer.
Move the second statement up in line to become first!
Load L with address of new SCAN pointer. Load

It with starting position for SYNT AX scan.

Use special entry to SYNTAX to get new TOKEN value.
Process the second statement in the original line.

THE GOSUB STATEMENT ROUTINE

The GOSUB statement routine creates a
software STACK so that the high level pro-
gram can return, after executing the sub-
routine, to the next line in the user program
buffer following the GOSUB statement. The
software stack created is merely a group of
locations in memory where addresses are
stored and a stack pointer system that indi-
cates what position in the stack is in use.
The software stack wutilized for GOSUB
statements has enough room reserved in it
to nest GOSUB statements up to eight levels.

The GOSUB software stack operates in a
push-down manner. Each time a GOSUB
statement is encountered, the current ad-
dress of the user program buffer line pointer
is placed on the top of the stack, with any

GOSUB, LLI 340

previous addresses on the stack being pushed
down. The RETURN statement, to be dis-
cussed shortly, causes the reverse to occur.
The address on the top of the stack is re-
moved (as the returning address) and any
remaining addresses on the stack are popped
up.

The GOSUB flow chart on the following
page illustrates the procedure followed when
a GOSUB statement is encountered. Once the
current user program buffer line pointer has
been placed on the GOSUB stack, the GOSUB
directive is handled as an effective GOTO
statement. This use of the GOTO routine al-
ready presented, to complete the GOSUB pro-
cess, makes the source listing for the GOSUB
routine quite short as illustrated below.

Load L with start of LINE NUMBER BUFFER

LHI 026 ** Load H with page of LINE NUMBER BUFFER
LDM Fetch (cc) of current line number into register D

IND Test contents of register by first incrementing

DCD And then decrementing the value in the register

JTZ GOSUBI1 If no line number, then processing a DIRECT statement
LLI 360 Else, load L with address of user pgm buff line pointer
LDM Fetch high value (page) of pgm line pointer to D

INL Advance the memory pointer

LEM Fetch the low part of pgm line pointer to E

GOSUB1, LLIO073
LHI 027
LAM
ADI 002
CPI 021

Set L to address of GOSUB STACK POINTER

** Set H to page of GOSUB STACK POINTER
Fetch value in GOSUB stack pointer to ACC

Add two to current stack pointer for new data to be
Placed on the stack and see if stack overflows

6-21

SEE IF THERE IS A LINE NUMBER
AT THE START OF THE LINE

NO YES

A

HAVE A DIRECT STATEMENT

SO SET UP A
FOR RETUR

ZERO BYTE
N ADDRESS

\?/

SET UP CURRENT ADDRESS
OF USER PROGRAM BUFFER
POINTER AS RETURN ADDRESS

GET GOSUB STACK POINTER
AND SEE IF THERE IS ROOM
AVAILABLE ON THE STACK

NO / YES
?

PUSH RETURN ADDRESS
ONTO THE TOP OF THE
GOSUB STACK

CAN NOW PROCESS THE
STATEMENT AS THOUGH
IT WAS A “GOTO” DIRECTIVE

GOTO

JFS GOSERR

If stack filled, have an error condition

LMA Else, store updated stack pointer

LLI 076 Load L with address of start of stack less offset (2)
ADL Add GOSUB stack pointer to base address

LLA To get pointer to top of stack (page byte)

LMD Store page part of pgm buffer line pointer in stack
INL Advance pointer to next byte in stack

LME Store low part of pgm buffer line pointer in stack
JMP GOTO Proceed from here as though processing a GOTO

THE RETURN STATEMENT ROUTINE

The RETURN statement routine takes the
address residing on the top of the GOSUB
stack just discussed and places it in the user
program buffer line pointer. This operation
will cause the high level program to continue
with the next statement following the origi-
nal GOSUB directive. Any remaining addres-
ses on the GOSUB stack are popped up, as

mentioned in the discussion of the GOSUB
statement, so that nested subroutines may be
properly handled.

The flow chart provided on the next page
illustrates the RETURN statement execution
process. The source listing for this short
routine is presented below.

RETURN, LLIO073

LHI 027
LAM

SUT 002
JTS RETERR
LMA

ADI 002
LLI 076
ADL

LLA

LDM

IND

DCD

JTZ EXEC
INL

LEM

LLI 360
LHI 026
LMD

INL

LME

JMP NXTLIN

Set L to address of GOSUB STACK POINTER

Set H to page of GOSUB STACK POINTER

Fetch the value of GOSUB stack pointer to ACC
Subtract two for data to be removed from stack

If stack underflow, then have an error condition
Restore new stack pointer to memory

Add two to point to previous top of stack

Load L with address of start of GOSUB stack less two
Add address of previous top of stack to base value
Set pointer to high address value in the stack

Fetch the high address value from stack to register D
Exercise the register contents to see if high address
Obtained is zero. If so, original GOSUB statement was
A DIRECT statement. Must return to Executive!
Else, advance pointer to get low address value from the
Stack into CPU register E.

Load L with address of user pgm line pointer storage
** Location. Load H with page of user pgm line pntr.
Put high address from stack into pgm line pointer.
Advance the memory pointer

Put low address from stack into pgm line pointer.
Execute the next line after originating GOSUB line!

(Two short error routines used by the GOSUB and
RETURN routines are shown following the flow chart.)

6-23

c

FETCH THE GOSUB STACK
POINTER AND SEE IF ANY-
THING IS ON THE STACK

NO YES
ERROR| < ? :

GET THE ADDRESS ON
THE TOP OF THE STACK

SEE IF THE HIGH ORDER
BYTE OF THE ADDRESS

OBTAINED IS ZERO

NO \\\7 YES
?

CALLING DIRECTIVE
WAS ISSUED BY A
DIRECT STATEMENT

PLACE ADDRESS OBTAINED
FROM THE STACK INTO THE
USER PROGRAM BUFFER
POINTER STORAGE LOCATION

THE PROGRAM WILL NOW
CONTINUE OPERATIONS
WITH THE LINE POINTED TO
BY THE CONTENTS OF THE
USER PGM BUFFER POINTER

GOSERR, LAI 307
LCI 323
JMP ERROR
RETERR, LAI 322
LCI 324

JMP ERROR

Load ASCII code for letter G into accumulator
Load ASCII code for letter S into register C
Go display GoSub (GS) error message.

Load ASCII code for letter R into accumulator
Load ASCII code for letter T into register C
Go display ReTurn (RT) error message.

THE INPUT STATEMENT ROUTINE

The INPUT statement routine is used to
input the values for user defined variables dur-
ing the operation of a high level program from
the system’s input device such as a keyboard.
The values that are inputted from the opera-
tor are then stored in the variables symbol
table.

The flow chart on the following page il-
lustrates the essential operation of the state-
ment routine. However, not illustrated in the
flow chart is the fact that the INPUT state-
ment routine has a special capability that is
essentially the reverse of the CHR function.
The CHR function was mentioned in the dis-
cussion of the PRINT statement and will be
detailed in a later chapter.

The reverse of the CHR function is the
capability to accept a character from an input
device and convert the character to a numeri-
cal value corresponding to its ASCII code (in
decimal for SCELBAL).

When a programmer using SCELBAL wants
to have the operator enter a character as an
input for a variable value, a dollar sign ($)
must be placed immediately after the variable
in the statement directive. Thus:

INPUT, CALCLESYM
LLI 202
LBM
INB
LLI 203
LMB

6 -

25

INPUT A$,B,C.D$

as an INPUT statement would mean that the
variables B and C were to be entered as num-
erical values, while variables A and D were to
entered as alphanumeric characters (which
will then be converted to numerical values ac-
cording to their ASCII code equivalents).

When the INPUT statement routine is
processing the statement line, it checks to
see if the last character of each variable is a
dollar sign. If so, the routine converts the
character inputted by the operator for the
variable value to its decimal ASCII code
numerical value. That numerical value thus
becomes the value assigned to the variable.
If the dollar sign is not present as the last
character of a variable, then the operator
input is assumed to represent the actual
numerical value entered.

This special capability is provided in the
portion of the INPUT statement routine
labeled INPUTX. The source listing which
follows illustrates that the capability is
a small subset of the fundamental INPUT
statement routine. Hence, it is not high-
lighted in the flow chart.

Clear the SYMBOL BUFFER

Load L with address of SCAN pointer storage location
Fetch value of SCAN pointer to register B

Increment value to point to next character

Change L to point to INPUT pointer (formerly TOKEN)
Updated SCAN pointer becomes INPUT pointer

INPUT

{INITIALIZING PROCEDURES]

FETCH A CHARACTER FROM
LINE BUFFER AND SEE IF
CHARACTER IS A COMMA

v
~

NO / YES
9

N

—>

SEE IF CHARACTER

IS A LEFT PAREN

YES

SET UP FOR
SUBSCRIPTED
VARIABLE

N

APPEND CHARACTER
TO SYMBOL BUFFER

ADVANCE POINTER IN
INPUT LINE BUFFER

SEE IF END OF
STATEMENT LINE

NO

/‘7\ YES

ACCEPT INPUT FROM USER
STORE INCOMING VALUE IN
VARIABLES SYMBOL TABLE

\/

ACCEPT INPUT FROM USER
STORE INCOMING VALUE IN
VARIABLES SYMBOL TABLE

INPUT1,

INPUTZ,

INPUTS3,

INPUT4,

INPUTX,

LLI 203

CAL GETCHR
JTZ INPUT3
CPI 254

JTZ INPUT4
CPI 250

JFZ INPUTZ2
CAL ARRAY2
LLI 206

LHI 026

LBM

LLI 203

LMB

JMP INPUT3

CAL CONCTS

LLI 203

CAL LOOP
JFZ INPUT1
CAL INPUTX
CAL STOSYM
JMP NXTLIN

CAL INPUTX
CAL STOSYM
LHI 026
LLI203

LBM

LLI 202

LMB

JMP INPUT

LII120
LAM

ADL

LLA

LAM

CPI 244

JFZ INPUTN
LLI120
LBM

DCB

LMB

CAL FPO
CAL CINPUT
LLI124
LMA

JMP FPFLT

Load L with address of INPUT pointer

Fetch a character from the line input buffer

If character is a space, ignore it. Else,

See if character is a comma. If so, process the
Variable that preceeds the comma.

If not, see if character is a left parenthesis.

If not, continue processing to build up symbolic variable
@@ If so, call array subscripting subroutine

@@ Load L with address of array set up pointer
@@ ** Looad H with page of array set up pointer
@@ Fetch pointer value (point to ““)”’ of subscript)
@@ Change pointer to address of INPUT pointer
@@ Update INPUT pointer

@@ Jump over concatenate instruction below

Concatenate character to SYMBOL BUFFER

Load L with address of INPUT pointer

Increment INPUT pointer and test for end of line

If not end of line, go get next character

If end of buffer, get input for variable in the SYMBOL
BUFFER and store the value in the VARIABLES table
Then continue to interpret next statement line

Get input from user for variable in SYMBOL BUFFER
Store the inputted value in the VARIABLES table

** Set H to page of INPUT pointer

Set L to location of INPUT pointer

Fetch pointer value for last character examined
Change L to point to SCAN pointer storage location
Update the SCAN pointer

Continue processing statement line for next variable

Load L with start of SYMBOL BUFFER (contains cc)
Fetch the (cc) (length of symbol in the buffer) to ACC
Add (cc) to base address to set up

Pointer to last character in the SYMBOL BUFFER
Fetch the last character in the SYMBOL BUFFER
See if the last character was a $ sign

If not a $ sign, get variable value as a numerical entry
If $ sign, reset L to start of the SYMBOL BUFFER
Fetch the (cc) for the variable in the SYMBOL BUFF
Subtract one from (cc) to chop off the $ sign

Restore the new (cc) for the SYMBOL BUFFER

Call subroutine to zero the floating point accumulator
Input one character from system input device

Load L with address of the LSW of the FPACC

Place the ASCII code for the character inputted there
Convert value to floating point format in FPACC

6 -27

INPUTN, LLI 144
LHI 026
LAI 277
CAL ECHO
CAL STRIN

JMP DINPUT

LHI 001
JMP CFALSE

FPO,

Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Load accumulator with ASCII code for ? mark

Call output subroutine to display the ? mark

Input string of characters (number) fm input device *
Convert decimal string into binary floating point nr.

** Load H with floating point working registers page
Zero the floating point accumulator & exit to caller

THE FOR STATEMENT ROUTINE

The FOR statement routine actually only
performs part of the tasks related to the state-
ment. The NEXT statement routine, which
will be described in the following section,
performs the major portion of the operations
using the data entered on the FOR statement
line.

The use of the combination of the FOR
and NEXT statements permits the high level
language programmer to form iterative pro-
gramming loops. These statements must al-
ways be used in pairs. The FOR statement
initiates an iterative loop. The NEXT state-
ment ends the loop. Statements in between
a FOR and a NEXT statement may be used to
perform desired operations.

FOR/NEXT loops may be nested one in-
side another provided that the nesting occurs

in the following fashion.

—— FOR X=1TO 5
— FOR Y=1TO 3
FOR Z=1TO 10

NEXT Z
— NEXT Y
—— NEXT X

In other words, the deepest loop must

-28

be closed out by a NEXT statement first!
Attempting to nest loops in the following
manner:

FOR X=1TO5
Fé)R Y=1TO 3

NEXT X
NEXT Y

will result in an error condition.

In order to allow for the nesting of FOR/
NEXT loops, a FOR/NEXT STACK imple-
mented by software is maintained similar in
operation (push-down, pop-up) to the soft-
ware stack established for GOSUB/RETURN
statements. However, the FOR/NEXT stack
requires four bytes for each nested loop. Two
bytes are used to store the address of the user
program buffer line pointer when a FOR
statement is encountered, and two are used to
store the symbolic name of the variable which
is iterated. (Remember, the GOSUB/RE-
TURN stack just required two bytes per
statement. These were used to store the ad-
dress of the GOSUB statement that initiated
the subroutine call operation.)

Room has been provided in one of the
special pointer/counters/look-up table pages
used in SCELBAL for a FOR/NEXT stack
area that will allow nesting of FOR/NEXT

loops up to eight levels. A stack pointer is
used to point to the proper locations in the
stack area as a function of the nesting level at

any given time.

The flow chart presented on the following

FOR,

FORERR,

FOR1,

LLI144
LHI 026
LMI 000
LLI146
LMI 000
LLI 205
LHI 027
LBM
INB
LMB
LLI 360
LHI 026
LDM
INL
LEM
LAB
RLC
RLC
ADI 134
LLA
LHI 027
LMD
INL
LME
LLI 325
LHI 001
CAL INSTR
LAE
NDA
JFZ FOR1

LAI 306
LCI 305
JMP ERROR

LLI 202
LHI026
LBM
INB
LLI 204
LMB
LLI 203
LME

page illustrates that the major function of the
FOR statement routine is to place the appro-
priate information on the FOR/NEXT stack.

The source listing for the routine starts
below.

Load L with address of AUX SYMBOL BUFFER

** Load H with page of AUX SYMBOL BUFFER
Initialize buffer by clearing first byte

Load L with location of second character in buffer
Clear that location in case of single character variable
Load L with address of FOR/NEXT STACK pointer
** Load H with page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer

Increment it in preparation for pushing operation
Restore it back to its storage location

Load L with address of user pgm buffer line pointer

** Set H to page of line pointer

Fetch page address of pgm buffer line pntr into D
Advance the memory pointer to pick up low part
Fetch low address of pgm buffer line pntr into E
Restore updated FOR/NEXT STACK pointer to ACC
Rotate it left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address of
The FOR/NEXT STACK to point to the new top of
The FOR/NEXT STACK and set up to point to stack
** Set H for page of the FOR/NEXT STACK

Store the page portion of the user pgm buffer line pntr
In the FOR/NEXT STACK, advance register L, then
Store the low portion of the pgm line pntr on the stack
Change L to point to start of TO string which is stored
** In a text strings storage area on this page

Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test

If TO found then proceed with FOR statement

Else have a For Error. Load ACC with ASCII code for
Letter F and register C with code for letter E.
Then go display the FE message.

Load L with address of SCAN pointer storage location
** Set H to page of the SCAN pointer

Fetch pointer value to ACC (points to letter R in the
For directive). Increment it to point to next character
In the line. Change register L and set this value up

As an updated FOR pointer.

Set L to address of TO pointer (formerly TOKEN)
Save pointer to TO in the TO pointer!

6-29

INITIALIZING PROCEDURES]

PLACE USER PROGRAM BUFFER
LINE POINTER ON TOP OF STACK

SCAN INPUT LINE BUFFER
FOR PRESENCE OF THE
“TO” DIRECTIVE

NO YES
ERROR —< FIND IT?

RESET POINTER BACK TO
THE FIRST CHARACTER
IN THE STATEMENT LINE
IMMEDIATELY FOLLOWING
THE “FOR”JDIRECTIVE

4
FETCH CHARACTER FROM
THE LINE INPUT BUFFER

[IS CHARACTER AN “="’ SIGN]

NO YES

CONCATENATE THE EVALUATE EXPRESSION
CHARACTER ONTO AFTER THE =" SIGN
AUX SYMBOL BUFFER

PLACE VARIABLE NAME IN
THE VARIABLES TABLE

1
ADVANCE THE INPUT
LINE BUFFER POINTER PLACE VARIABLE SYMBOL
(NAME) IN FOR/NEXT STACK

[SEE IF END OF LINE]

PLACE THE INI'Il‘ITAxL VARIABLE

VALUE OBTAINED WHEN THE

EXPRESSION WAS EVALUATED

NO IN THE VARIABLES TABLE
<& X
W

FOR2,

FORS3,

FORA4,

FOR5,

LLI 204

CAL GETCHR
JTZ FOR3
CPI 275

JTZ FOR4
LLI 144

CAL CONCT1

LLI 204

CAL LOOP
JFZ FOR2
JMP FORERR

LLI 204
LBM

INB

LLI 276
LMB

LLI 203
LBM

DCB

LLI 277
LMB

CAL EVAL
CAL RESTSY
LLI144
LHI 026
LAM

CPI 001
JFZ FOR5
LLI 146
LMI 000
JMP FORS

LLI 205

LHI 027

LAM

RLC

RLC

ADI 136

LEA

LDH

LLI 145

LHI 026

LBI 002

CAL MOVEIT
CAL STOSYM
JMP NXTLIN

Load L with address of the FOR pointer

Fetch a character from the statement line

If it is a space, ignore it

Test to see if character is the “="’ sign

If so, variable name is in the AUX SYMBOL BUFFER
If not, then set L to point to start of the AUX SYMBOL
BUFFER and concatenate the character onto the buffer

Reset L to address of the FOR pointer

Increment the pointer and see if end of line

If not end of line, continue looking for the “="’ sign
If reach end of line before ‘="’ sign, then have error

Set L with address of the FOR pointer

Fetch pointer value to ACC (pointing to “‘="" sign)
Increment it to skip over the *“="" sign

Set L to address of the EVAL pointer

Restore the updated pointer to storage

Set L to the address of the TO pointer

Fetch pointer value to ACC (pointing to letter T in TO)
Decrement it to point to character before the T in TO
Set L to EVAL FINISH pointer storage location

Store the EVAL FINISH pointer value

Evaluate the expression between the “="’ sign and TO
Directive. Place the variable name in the variables table.
Load L with starting address of the AUX SYMBOL BF
** [,oad H with the page of the AUX SYMBOL BUFF
Fetch the (cc) for the name in the buffer

See if the symbol (name) length is just one character

If not, go directly to place name in FOR/NEXT STACK
If so, set L to point to second character location in the
AUX SYMBOL BUFFER and set it equal to zero.

This jump directs program over pntrs/cntrs/table area

Load L with address of the FOR/NEXT STACK pointer
** Load H with page of the FOR/NEXT STACK pntr
Fetch the stack pointer to the ACC.

Rotate it left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address
Plustwo of the base address to point to the next part of
The FOR/NEXT STACK. Place this value in register E.
Set D to the FOR/NEXT STACK area page.

Load L with the address of the first character in the

** AUX SYMBOL BUFFER and set up H to this page.
Set up register B as a number of bytes to move counter.
Move the variable name into the FOR/NEXT STACK.
Store initial variable value in the VARIABLES TABLE.
Continue with next line in user program buffer.

6-31

THE NEXT STATEMENT ROUTINE

The NEXT statement routine is the work
horse portion of the FOR/NEXT combi-
nation. As indicated in the preceeding sec-
tion, the statement types must always appear
in pairs in a high level program. When a NEXT
statement is used it must be followed (in the
statement line) by the identifying variable
that associates it with an originating FOR
statement.

The flow chart on the next several pages
illustrates the essential operations of the
NEXT statement. This flow chart is amplified
by the following discussion.

The first thing the NEXT statement routine
accomplishes is to go to the FOR/NEXT stack
to obtain the starting address of the assoc-
iated FOR statement line in the user program
buffer. As a check for proper FOR/NEXT
nesting, a test is made to see if the variable
in the FOR statement line pointed to by the
entry in the FOR/NEXT stack is the same as
that specified in the NEXT statement being
processed. If not, improper FOR/NEXT nest-
ing has been attempted.

The NEXT statement routine then pro-
ceeds to process the information on the origi-
nating FOR statement line. Remember, the
originating FOR statement line contains the
the variable range (limit) and step size for the
FOR/NEXT loop being processed.

A FOR statement may be formatted in one
of two possible ways. The statement:

FOR X=1TO5

represents an IMPLIED STEP SIZE. That is,
since no STEP size is specified, the statement
is to be interpreted as having an implied value
of 1.0.

If desired, the high level language pro-
grammer may specify a STEP size in a FOR
statement such as in the example:

FOR X=1TO 5 STEP (2)

In this case, the STEP size will be whatever
value is dictated by the programmer in the
term that follows the STEP directive.

Thus, the NEXT statement routine must
determine whether an implied or
specific STEP size is involved. When this
has been accomplished, the STEP size is
added to the current value of the associated
variable specified in the FOR/NEXT loop.
A test is made to see if the new variable
value thus obtained is within the range
limit specified in the FOR statement line.
If the new value causes the variable to ex-
ceed the limit value, then the FOR/NEXT
loop must be terminated. This is accom-
plished by removing the associated data
from the top of the FOR/NEXT stack and
then directing program operation to con-
tinue with the statement that follows the
NEXT statement. (And NOT the statement
following the FOR statement line!) If, on
the other hand, the new variable value is
still within the specified limit range, then
the FOR/NEXT loop must be executed
again. In this case, the updated variable
value is stored for future use and the state-
ment following the FOR statement will be
the next program line executed by the in-
terpreter.

This flow of operations is apparent in
the accompanying flow chart. The details of
the routine’s execution are presented in the
source listing which follows the flow chart.

ERROR

ERROR|

NEXT

[INITIALIZING PROCEDURES]

FETCH CHARACTER STRING
FOLLOWING “NEXT” DIRECTIVE
INTO THE AUXILIARY SYMBOL
BUFFER AS THE SYMBOLIC
VARIABLE NAME

SEE IF VARIABLE NAME IS THE
SAME ONE AS ON THE TOP OF
THE FOR/NEXT STACK

NO J YES
?

SAVE CURRENT USER PROGRAM
BUFFER LINE POINTER IN AUX
LINE POINTER STORAGE AREA

PULL LINE POINTER VALUE
FROM THE TOP OF THE FOR/
NEXT STACK AND PLACE IN THE
USER PROGRAM BUFFER LINE
POINTER STORAGE LOCATIONS

SEARCH CORRESPONDING *“FOR”
STATEMENT LINE FOR THE
OCCURRENCE OF “TO’ STRING

NO / YES
FIND IT?

LOOK FOR PRESENCE OF THE
“STEP” DIRECTIVE IN THE RE-
MAINDER OF THE “FOR”
STATEMENT LINE

NO YES

LOAD FOR/NEXT STEP
REGISTER WITH VALUE
1.0 (FLOATING POINT)

EVALUATE THE EXPRESSION
AFTER “TO” DIRECTIVE TO
OBTAIN FOR/NEXT LIMIT VALUE

STORE LIMIT VALUE OBTAINED

IN FOR/NEXT LIMIT REGISTERS

FIND IT?

EVALUATE EXPRESSION AFTER
“TO”’ DIRECTIVE TO OBTAIN
FOR/NEXT LIMIT VALUE

STORE LIMIT VALUE OBTAINED
IN FOR/NEXT LIMIT REGISTERS

EVALUATE THE EXPRESSION
AFTER “STEP”’ DIRECTIVE TO
OBTAIN FOR/NEXT STEP SIZE

LOAD FOR/NEXT STEP SIZE
REGISTERS WITH STEP VALUE

RESCAN LINE TO LOCATE
THE “FOR” DIRECTIVE

PICK UP THE VARIABLE NAME
THAT IMMEDIATELY FOLLOWS
THE ““FOR” DIRECTIVE AND
STORE IT IN THE AUXILIARY
SYMBOL BUFFER

I[EVALUATE THE VARIABLE]

ADD THE STEP VALUE TO THE
CURRENT VARIABLE VALUE

SUBTRACT THE NEW VARIABLE
VALUE FROM THE VALUE IN THE
FOR/NEXT LIMIT REGISTERS

SEE IF THE STEP VALUE WAS
SPECIFIED TO BE ZERO

YES

SEE IF THE STEP VALUE WAS

SPECIFIED AS LESS THAN ZERO

ERROR

NO

YES

SEE IF NEW VARIABLE VALUE
OR EQUAL
TQ THE SPECIFIED LIMIT

LESS THAN

SEE IF NEW VARIABLE VALUE
GREATER THAN OR EQUAL
TO THE SPECIFIED LIMIT

A

YES

STORE UPDATED VALUE FOR
THE VARIABLE BACK IN THE
VARIABLES LOOK-UP TABLE

SET USER PROGRAM BUFFER
LINE POINTER BACK TO THE
LINE CONTAINING
THE “NEXT” STATEMENT

PROCEED TO INTERPRET THE
STATEMENT IN THE LINE THAT
FOLLOWS THE “FOR’’ DIRECTIVE

POP UP THE FOR/NEXT
STACK TO RID THE STACK
OF THE FOR/NEXT LOOP

NEXT, LLI144

NEXT1,

LHI 026
LMI 000
LLI 202
LBM
INB
LLI 201
LMB

LLI 201

CAL GETCHR
JTZ NEXT2
LLI 144

CAL CONCT1

A

NXTLIN

Load L with start of AUX SYMBOL BUFFER

** Set H to page of AUX SYMBOL BUFFER

Initialize AUX SYMBOL BUFFER by clearing first byte
Change L to address of SCAN pointer

Fetch pointer value to CPU register B

Add one to the current pointer value

Load L with address of NEXT pointer storage location
Place the updated SCAN pointer as the NEXT pointer

Reset L to address of NEXT pointer storage location
Fetch the character pointed to by the NEXT pointer
If the character is a space, ignore it

Else, load L with start of AUX SYMBOL BUFFER
Concatenate the character onto the AUX SYMBOL BF

NEXT2,

NEXTS3,

FORNXT,

NEXT4,

LLI 201
CAL LOOP
JFZ NEXT1
LLI 144
LAM

CPI 001
JFZ NEXT3
LLI 146
LMI 000

LLI 205
LHI 027
LAM

RLC

RLC

ADI 136
LHI 027
LLA

LDI 026
LEI 145
LBI 002
CAL STRCPC
JTZ NEXT4

LAI 306
LCI 316
JMP ERROR

LLI 360
LHI 026
LDM
INL
LEM
INL
LMD
INL
LME
LLI 205
LHI 027
LAM
RLC
RLC
ADI 134
LLA
LDM
INL
LEM
LLI 360
LHI 026
LMD
INL

Reset L to address of NEXT pointer storage location
Advance the NEXT pointer and see if end of line
Fetch next character in line if not end of line

When reach end of line, should have variable name

In the AUX SYMBOL BUFFER. Fetch the (cc) for
The buffer and see if variable name is just one letter
If more than one proceed directly to look for name
In FOR/NEXT STACK. If have just a one letter name
Then set second character in buffer to zero

Load L with address of FOR/NEXT STACK pointer
** Set H to page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address plus
Two to form pointer to variable name in top of stack
** Set H to page of FOR/NEXT STACK

Move pointer value from ACC to CPU register L

** Set register D to page of AUX SYMBOL BUFFER
Set register E to first character in the buffer

Set B to serve as a character counter

See if variable name in the NEXT statement same as
That stored in the top of the FOR/NEXT STACK

Load ACC with ASCII code for letter F
Load register C with ASCII code for letter N
Display For/Next (FN) error message if required

Load L with address of user program line pointer

** Load H with page of user pgm line pntr storage loc.
Fetch the page portion of the line pointer into D
Advance the memory pointer

Fetch the low portion of the line pointer into E
Advance pntr to AUXILIARY LINE POINTER storage
Location and store value of line pointer there too (page)
Advance pointer to second byte of AUXILIARY line
Pointer and store value of line pointer (low portion)
Load L with address of FOR/NEXT STACK pointer
** Set H to page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address to
Form pointer to top of FOR/NEXT STACK and place
The pointer value into CPU register L. Fetch the page
Address of the associated FOR statement line pointer
Into register D. Advance the pointer and fetch the low
Address value into register E. Prepare to change user
Program line pointer to the FOR statement line by

** Setting H & L to the user pgm line pntr storage loc.
Place the page value in the pointer storage location
Advance the memory pointer

6 - 36

NEXT5,

LME

LHD

LLE

LDI 026

LEI 000

CAL MOVEC
LLI 325

LHI 001
CAL INSTR
LAE

NDA

JTZ FORNXT
ADI 002

LLI 276

LHI 026
LMA

LLI 330

LHI 001
CAL INSTR
LAE

NDA

JFZ NEXT5
LLI 004

LHI 001
CAL FLOAD
LLI 304
CAL FSTORE
LLI 000

LHI 026
LBM

LLI 277
LMB

CAL EVAL
LLI 310

LHI 001
CAL FSTORE
JMP NEXT6

DCE

LLI 277
LHI 026
LME
CALEVAL
LLI 310
LHI 001
CAL FSTORE
LLI 277
LHI 026
LAM

ADI 005
DCL

Place the low value in the pointer storage location

Now set up H and L to point to the start of the
Associated FOR statement line in the user pgm buffer
** Change D to point to the line input buffer

And set L to the start of the line input buffer

Move the associated FOR statement line into the input
Line buffer. Set L to point to start of TO string which is
** Stored in a text strings storage area on this page
Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test. If TO found then proceed to set up for
Evaluation. If TO not found, then have error condition.
Advance the pointer over the characters in TO string
Change L to point to EVAL pointer storage location
Set H to page of EVAL pointer. Set up the starting
Position for the EVAL subroutine (after TO string)

Set L to point to start of STEP string which is stored
** In text strings storage area on this page. Search the
Statement line for the occurrence of STEP

Register E will be zero if STEP not found. Move E to
The accumulator to make a test. If STEP found must
Evaluate expression after STEP to get STEP SIZE.
Else, have an IMPLIED STEP SIZE of 1.0. Set pointer
** To start of storage area for 1.0 in floating point
Format and call subroutine to load FPACC with 1.0
Set L to start of FOR/NEXT STEP SIZE storage loc.
Store the value 1.0 in the F/N STEP SIZE registers
Change L to the start of the input line buffer

** Set H to the page of the input line buffer

Fetch the (cc) into CPU register B (length of FOR line)
Change L to EVAL FINISH pointer storage location
Set the EVAL FINISH pointer to the end of the line
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F/N LIMIT registers

** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value

Since have IMPLIED STEP jump ahead

When have STEP directive, subtract one from pointer
To get to character before S in STEP. Save this value in
The EVAL FINISH pointer storage location to serve
As evaluation end location when obtaining TO limit
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F/N LIMIT registers

** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value

Reset L to EVAL FINISH pointer storage location

** Set H to page of EVAL FINISH pointer storage loc.
Fetch the pointer value (character before S in STEP)
Add five to change pointer to character after P in STEP
Decrement L to point to EVAL (start) pointer

6-37

NEXT®6,

NEXT7,

NEXTS,

NEXT9,

LMA

LLI 000

LBM

LLI 277

LMB

CAL EVAL
LLI 304

LHI 001

CAL FSTORE

LLI 144
LHI 026
LMI 000
LLI 034
LHI 027
CAL INSTR
LAE

NDA

LLI 202
LHI 026
LMA

JTZ FORNXT
ADI 003
LLI 203
LMA

LLI 203

CAL GETCHR
JTZ NEXTS8
CPI 275

JTZ NEXT9
LLI 144

CAL CONCT1

LLI 203

CAL LOOP
JFZ NEXT7
JMP FORNXT

LLI 202
LHI 026
LAM
ADI 003
LLI 276
LMA
LLI 203
LBM
DCB
LLI 277
LMB
CAL EVAL

Set up the starting position for the EVAL subroutine
Load L with starting address of the line input buffer
Fetch the (cc) for the line input buffer (line length)
Change L to the EVAL FINISH storage location

Set the EVAL FINISH pointer

Evaluate the STEP SIZE expression

Load L with address of start of F/N STEP registers
*% Set H to page of F/N STEP registers

Store the FOR/NEXT STEP SIZE value

Load L with address of AUX SYMBOL BUFFER

Set H to page of the AUX SYMBOL BUFFER
Initialize AUX SUMBOL BUFFER with a zero byte
Set L to start of FOR string which is stored in the

** KEYWORD look-up table on this page

Search the statement line for the FOR directive
Register E will be zero if FOR not found. Move E to
ACC and make test to see if FOR directive located
Load L with address of SCAN pointer

** Load H with page of SCAN pointer

Set up pointer to occurrence of FOR directive in line
If FOR not found, have an error condition

If have FOR, add three to advance pointer over FOR
Set L to point to F/N pointer storage location

Set F/N pointer to character after FOR directive

Set L to point to F/N pointer storage location

Fetch a character from position pointed to by F/N pntr
If character is a space, ignore it

Else, test to see if character is “="’ sign

If yes, have picked up variable name, jump ahead

If not, set L to the start of the AUX SYMBOL BUFFER
And store the character in the AUX SYMBOL BUFFER

Load L with address of the F/N pointer

Increment the pointer and see if end of the line

If not, continue fetching characters

If end of line before ‘="’ sign then have error condx

Load L with address of SCAN pointer

** Load H with page of SCAN pointer

Fetch pointer value to ACC (points to start of FOR
Directive) and add three to move pointer over FOR
Directive. Change L to EVAL pointer storage location
Set EVAL pointer to character after FOR in line
Load L with address of F/N pointer storage location
Fetch pointer to register B (points to ‘="’ sign) and
Decrement the pointer (to character before ="’ sign)
Load L with address of EVAL FINISH pointer

Set EVAL FINISH pointer

Call subroutine to obtain current value of the variable

6 -38

NEXT10,

NEXT11,

NEXT12,

LLI 304

LHI 001

CAL FACXOP
CAL FPADD
LLI 314

LHI 001

CAL FSTORE
LLI 310

CAL FACXOP
CAL FPSUB
LLI 306

LAM

NDA

LII 126

LAM

JTZ FORNXT
JTS NEXT11
NDA

JTS NEXT12
JTZ NEXT12

LLI 363
LHI 026
LEM
DCL
LDM
DCL
LME
DCL
LMD
LLI 205
LHI 027
LBM
DCB
LMB
JMP NXTLIN

NDA
JFS NEXT12
JMP NEXT10

LLI 314

LHI 001

CAL FLOAD

CAL RESTSY
CAL STOSYM
JMP NXTLIN

Load L with address of start of F/N STEP registers

** Set H to page of F/N STEP registers

Call subroutine to set up FP registers for addition

Add F/N STEP size to current VARIABLE value

Load L with address of F/N TEMP storage registers
**Set H to page of F/N TEMP storage registers

Save the result of the addition in F/N TEMP registers
Load L with starting address of F/N LIMIT registers
Call subroutine to set up FP registers for subtraction
Subtract F/N LIMIT value from VARIABLE value

Set pointer to MSW of F/N STEP registers

Fetch this value into the ACC

Test to see if STEP value might be zero

Load L with address of MSW of FPACC

Fetch this value into the ACC

If STEP size was zero, then endless loop, an error condx
If STEP size less than zero make alternate test on limit
Test the contents of the MSW of the FPACC

Continue FOR/NEXT loop if current variable value is
Less than or equal to the F/N LIMIT value

If out of LIMIT range, load L with address of the AUX
** PGM LINE pointer. (Contains pointer to the NEXT
Statement line that initiated this routine.) Fetch the
Low part of the address into E, decrement the memory
And get the page part of the address into CPU register
Decrement memory pointer to the low portion of the
User pgm buffer line pointer (regular pointer) and set it
With the value from the AUX line pntr, decrement the
Pointer and do the same for the page portion

Set L to address of FOR/NEXT STACK pointer

** Set H to page of FOR/NEXT STACK pointer

Fetch and decrement the

FOR/NEXT STACK pointer value

To perform effective popping operation

Statement line after NEXT statement is done next

When F/N STEP is negative, reverse test so that if the
Variable value is greater than or equal to the F/N LIMIT
The FOR/NEXT loop continues. Else it is finished.

Load L with address of /N TEMP storage registers
** Set H to F/N TEMP storage registers page
Transfer the updated variable value to the FPACC
Restore the variable name and value

In the VARIABLES table. Exit routine so that
Statement line after FOR statement is done next

THE OPTIONAL DIM STATEMENT ROUTINE

The DIM statement routine is an optional
statement routine that may be included in
SCELBAL depending on whether the user de-
sires to utilize its capabilities and sacrifice
the memory space that it and routines asso-
ciated with it utilize.

The purpose of the DIM statement routine
is to allow the defining of single character
ARRAY VARIABLES and to reserve space
in an ARRAY VALUES TABLE for the
specified number of entries that the array
will occupy.

The DIM statement capability in SCELBAL
is restricted to single dimension arrays. To
conserve memory space, the DIM routine to
be presented restricts the total amount of
memory used to store the values at points
in an array to 256 bytes (one page). The
storage of floating point numbers in the
format used in SCELBAL requires four bytes
of memory to store a value. Thus, the total
number of array points that may be set aside
in one program is 256 divided by 4 or 64
(decimal).

To keep the DIM capability in line with
the storage space allotted for array values, the
number of arrays that may be created in a
program is restricted to four. However, re-
gardless of whether one, two, three or four
array variables are defined, the total number
of array subscripts for all the variables must
not exceed 64 because of the limitation dis-
cussed in the previous paragraph.

Thus, one could DIMension a single array
to have 64 locations. One could specify two
arrays, each using 32 entries. One could
create four array variables and DIMension
16 locations for each. Or, any other combi-
nation may be specified as long as the total
number of array variable names does not ex-
ceed four, and the total number of subscrip-
ted array points does not exceed 64!

The reader must remember that an array

variable name may only consist of one letter
followed by a subscript. Thus, a four element
array having the symbolic variable name A
would consist of the elements:

A(l1)
A(2)
A(3)
A(4)

Since the above array would need to have
four locations reserved for it in the ARRAY
VALUES TABLE, the DIMension state-
ment for it would appear as:

DIM A(4)

The reader must note too, that the array size
in a DIMension statement must always be
given in the form of an integer value (less than
or equal to 64) and may not be another
variable.

Associated with the ARRAY VALUES
TABLE is another table called the ARRAY
VARIABLES TABLE. This short table, hav-
ing room for a maximum of four entries, con-
tains the array name(s) and the starting loca-
tion(s) in the ARRAY VALUES TABLE for
the first array value associated with an array
name. The ARRAY VARIABLES TABLE
reserves four bytes for each array specified
in a program. Two are used to store the array
name. (This is done using string format, thus
the first byte will always be 001 to indicate a
one byte character string and the second byte
will be the alphabetical character designated
as the name of the array.) The third byte in
an ARRAY VARIABLES TABLE entry is
used to store the starting location for the
first element in the associated ARRAY
VALUES TABLE. The fourth byte is reserved
for possible use by the user who might desire
to modify and expand the array capability of
SCELBAL. It could be used to store the page
address value in the ARRAY VALUES
TABLE if that table crossed page boundaries.

ARRAY VARIABLES TABLE

001
A
000
001
B

020

001
C

060
001
D
200

)

L 4

ARRAY VALUES TABLE

addr

000 FP VALUE
001 FOR ARRAY
002 POSITION
003 A1)

004 FP VALUE
005 |FOR ARRAY
006 POSITION
007 A(2)

010 FP VALUE
011 FOR ARRAY
012 POSITION
013 A(3)

014 FP VALUE
015 FOR ARRAY
016 POSITION
017 A(4)

020 FP VALUE
021 |FOR ARRAY
022 POSITION
023 B(1)

024 FP VALUE
025 FOR ARRAY
026 POSITION
027 B(2)

060 FP VALUE
061 FOR ARRAY
062 POSITION
063 C(1)

200 FP VALUE
201 FOR ARRAY
202 POSITION
203 D(1)

The ARRAY VARIABLES
TABLE holds the array vari-
able names and points to the
starting location for each
series of subscripted array
entries associated with an
array name. In this example
the array named A has had
room for four entries re-
served for it. The array
named B has had eight
value locations reserved.
C has 16 and D has 32.

The ARRAY VALUES
TABLE is used to hold the
numerical value for each
position in the array. Numeri-
cal values are stored in float-
ing point format and require
four bytes each. Note that
the starting address for each
series of values associated
with an array name is that
address pointed to in the
ARRAY VARIABLES
TABLE. The address for a
particular point in an array
is calculated as a function of
the subscript specified.

The relationship between the ARRAY
VARIABLES TABLE and the ARRAY
VALUES TABLE may be seen a little more
clearly by examining the pictorial illustra-
tion presented on the preceeding page.

The flow chart on the next several pages
summarizes the operation of the DIM routine
as just discussed. The commented source

Remember, this routine is an optional
routine. If array capability is not desired
this routine may be left out of SCELBAL
(along with related routines which will be
presented later). If the routine is not in-
corporated in the reader’s individual version
of SCELBAL the various locations through-
out the program identified by an @@ mark
should be changed to effective no-operation
instructions (such as LAA) as previously ex-

listing for the routine starts below.

DIM,

DIM1,

DIM2,

DIMS,

DIM4,

CAL CLESYM
LLI 202

LBM

INB

LLI 203

LMB

LLI 203

CAL GETCHR
JTZ DIM2

CPI 250

JTZ DIM3
CAL CONCTS

LLI 203

CAL LOOP
JFZ DIM1
JMP DIMERR

LLI 206
LMI 000

LLI 206
LHI 026
LAM
RLC

RLC

ADI 114
LHI 027
LLA
LEI120
LDI 026
CAL STRCP
JTZ DIM9
LLI 206
LHI 026
LBM

plained.

Initialize the SYMBOL BUFFER to cleared condition
Load L with address of SCAN pointer

Fetch SCAN pointer value into register B

Add one to the SCAN pointer value

Change L to DIM pointer (formerly TOKEN) storage
Store the updated SCAN pointer as the DIM pointer

Load L with the address of DIM pointer storage location
Fetch a character from the line input buffer

If character fetched is a space, ignore it

Else see if character is ““(’’ left parenthesis

If so, should have ARRAY VARIABLE name in buffer
If not, append the character to the SYMBOL BUFFER

Load L with the address of DIM pointer storage location
Increment the pointer and see if end of line

If not end of line, fetch next character

Else have a DIMension error condition

Load L with address of ARRAY pointer storage loc
Initialize ARRAY pointer to starting value of zero

Load L with address of ARRAY pointer storage loc

** Set H to page of ARRAY pointer storage location
Fetch value in ARRAY pointer to ACC (effectively
Represents number of arrays defined in pgm). Rotate
Left twice to multiply by four (number of bytes per
entry in ARRAY VARIABLES table). Add to base

** Address to form pointer to ARRAY VARIABLES
Table and set up H & L as the memory pointer.

Load E with starting address of the SYMBOL BUFFER
** Load D with the page address of the SYMBOL BUFF
Compare contents of SYMBOL BF to entry in ARRAY
VARIABLES table. If same, have duplicate array name.
Else, load L with address of ARRAY pointer storage

** Load H with page of ARRAY pointer storage

Fetch the ARRAY pointer value to register B

6-42

[INTTIALIZING PROCEDURES]

T~

FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT
IS A LEFT PARENTHESIS (“‘(’")

\ YES
0

CONCATENATE CHARACTER
ONTO THE SYMBOL BUFFER

{ADVANCE THE POINTER]

ISEE IF END OF LINE]

HAVE SYMBOLIC NAME FOR
AN ARRAY IN SYMBOL BUFFER

SEE IF ARRAY NAME ALREADY
IN ARRAY VARIABLES TABLE

NO
<

ADD ARRAY SYMBOLIC NAME
TO ARRAY VARIABLES TABLE

A

YES
< \9/

|
CONTINUE PROCESSING LINE
TO OBTAIN DIMENSION

{CLEAR THE SYMBOL BUFFER]

ALREADY HAVE ARRAY BY
THAT NAME. LOOK FOR NEXT
ARRAY NAME IN THE LINE

FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT
IS A RIGHT PARENTHESIS (“)’")

NO : YES
‘ ?

SEE IF CHARACTER IS AJ
VALID DECIMAL DIGIT

NO YES
ERROR] < <v>_

CONCATENATE CHARACTERI
ONTO THE SYMBOL BUFFER

[ADVANCE THE POINTER)

|SEE IF END OF LINE]

ERROR

A

PLACE STARTING ADDRESS OF
THE ARRAY VALUES TABLE IN
THE ARRAY VARIABLES TABLE

N

[ADVANCE THE POINTER]
@
N FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT
IS A COMMA SIGN (“,”")

NO

?\ YES

HAVE ANOTHER DIM DIRECTIVE

ON THE STATEMENT LINE

s

SEE IF END OF

NO

TATEMENT LINE °

/ YES
?

N

INB
LMB
LLIO75
LHI 027
LAM
DCB
CPB
JFZ DIM4
LLIO75
LHI 027
LBM
INB
LMB
LLIO76
LMB
LLI 206
LHI 026
LMB

Increment the value

Restore it to ARRAY pointer storage location
Change L to number of arrays storage location

** Set H to page of the number of arrays storage loc
Fetch the number of arrays value to the ACC

Restore B to previous count

Compare number of arrays tested against nr defined
If not equal, continue searching ARRAY VARIABLES
Table. When table searched with no match, then must
% Append name to table. First set pointer to number
Of arrays storage location. Fetch that value and

Add one to account for new name being added.
Restore the updated value back to memory.

Change pointer to ARRAY TEMP pointer storage
Store pointer to current array in ARRAY TEMP too.
Load L with address of ARRAY pointer storage loc.
** Set H to page of ARRAY pointer storage location
And update it also for new array being added.

6 -45

DIM5,

DIMS6,

DIM7,

LAM

RLC

RLC

ADI 114
LEA

LDI 027
LLI120

LHI 026
CAL MOVEC
CAL CLESYM
LLI 203

LHI 026
LBM

INB

LLI 204
LMB

LLI 204

CAL GETCHR
JTZ DIM6

CPI 251

JTZ DIM7

CPI 260

JTS DIMERR

CPI 272

JFS DIMERR

CAL CONCTS

LLI 204

CAL LOOP
JFZ DIM5
JMP DIMERR

LLI120
LHI 026
CAL DINPUT
CAL FPFIX
LLI124
LAM

RLC

RLC

LCA

LLI 076
LHI 027
LAM

SUI 001
RLC

RLC

ADI 122
LLA

LHI 027

Fetch the current ARRAY pointer value to the ACC
Multiply it times four by performing two rotate left
Operations and add it to base value to form address in
The ARRAY VARIABLES table. Place the low part
Of this calculated address value into register E.

** Set register D to the page of the table.

Load L with the start of the SYMBOL BUFFER

** Load H with the page of the SYMBOL BUFFER
Move the array name from the SYMBOL BUFFER to
The ARRAY VARIABLES table. Then clear the
SYMBOL BUFFER. Reset L to the DIM pointer storage
** Location. Set H to the DIM pointer page.

Fetch the pointer value (points to “‘(>’ part of DIM
Statement). Increment the pointer to next character in
The line input buffer. Change L to DIMEN pointer.
Store the updated DIM pointer in DIMEN storage loc.

Set L to DIMEN pointer storage location

Fetch character in line input buffer

Ignore character for space

If not space, see if character is right parenthesis (‘‘)’’).
If yes, process DIMension size (array length)

If not, see if character is a valid decimal number

If not valid number, have DIMension error condition
Continue testing for valid decimal number

If not valid number, then DIMension error condition
If valid decimal number, append digit to SYMBOL BF

Set L to DIMEN pointer storage location

Advance the pointer value and check for end of the line
If not end of line, continue fetching DIMension size

If end of line before right parenthesis, have error condx.

Load L with address of start of SYMBOL BUFFER
** L,oad H with page of SYMBOL BUFFER. (Now
Contains DIMension size.) Convert buffer to floating
Point number and then reformat to fixed point.

Load L with address of LSW of fixed point number
And fetch the low order byte of the nr into the ACC
Rotate it left two times to multiply it by four (the
Number of bytes required to store a floating point nr).
Store this value in CPU register C temporarily.

Set L to ARRAY TEMP storage location.

** Set H to ARRAY TEMP pointer page.

Fetch the value in ARRAY TEMP (pointsto ARRAY
VARIABLES table). Subtract one from the pointer
Value and multiply the result by four using rotate left
Instructions. Add this value to a base address
(Augmented by two) to point to ARRAY VALUES
Pointer storage location in the ARRAY VARIABLES
** Table and set the pointer up in registers H & L.

6 -46

DIMS,

DIM9,

DIM10,

DIMERR,

LBM
ADI 004
LLA
LAB
ADC
LMA

LLI 204
LHI 026
LBM
LLI 203
LMB

LLI 203

CAL GETCHR
CPI 254

JTZ DIM10
LLI 203

CAL LOOP
JFZ DIM9
JMP NXTLIN

LLI 203
LBM
LLI 202
LMB
JMP DIM

LAI 304
LCI 305
JMP ERROR

Fetch the starting address in the ARRAY VALUES
Table for the previous array into register B. Now add
Four to the ARRAY VARIABLES table pointer to
Point to curréent ARRAY VALUES starting address.
Add the previous array starting address plus number of
Bytes required and store as starting loc for next array

Set L to address of DIMEN pointer storage location
** Set H to page of DIMEN pointer

Fetch pointer value (points to)’ in line)

Change L to DIM pointer storage location

Store former DIMEN value back in DIM pointer

Load L with address of DIM pointer storage location
Fetch a character from the line input buffer

See if character is a comma (,) sign

If yes, have another array being defined on the line
If not, reset L to the DIM pointer

Increment the pointer and see if end of the line

If not end of the line, keep looking for a comma
Else exit the DIM statement routine to continue pgm

Set L to DIM pointer storage location

Fetch pointer value (points to comma sign just found)
Load L with address of SCAN pointer storage location
Place DIM pointer into the SCAN pointer

Continue processing DIM statement line for next array

On error condition, load ASCII code for letter D in ACC
And ASCII code for letter E in CPU register C
Go display the Dimension Error (DE) message.

The final routine to be discussed in this
chapter is used by several of the statement
routines such as the LET and INPUT routines.
This routine is used to store the name of a
variable and its numerical value in a table
called the VARIABLES LOOK-UP TABLE.
(A portion of the routine is also used to
handle the storing of values assigned to
array variables (which are stored in a sepa-
rate table) if the user elects to utilize the
single DIMension array handling capability
of SCELBAL. The array handling routines
themselves are discussed in a later chapter.)

The VARIABLES LOOK-UP TABLE is
organized to hold the variable names and

- 47

the current values assigned to those names
in the following format. The first two
bytes of an entry are used to hold the one
or two letter NAME for the variable. (If the
variable name only consist of one letter, the
second byte of the entry will be zero.) The
next four bytes in an entry are used to store
the current value of the variable in floating
point format. (This format for storing mathe-
matical values will be presented in a later
chapter.) Thus, each entry in the table re-
quires six bytes of storage. Sufficient room
has been provided in the assembled version of
SCELBAL presented in this book for storage
of up to 20 variable names at one time during
the execution of a higher level program.

The general operation of the routine is il- The source listing for the subroutine is presented
lustrated in the flow chart which starts below. following the flow chart.

S

IS VALUE BEING PROCESSED
ASSOCIATED WITH AN ARRAY

NO :: YES
?

IS VARIABLE NAME
JUST ONE CHARACTER

NO A YES

MAXIMUM SYMBOLIC NAME MAKE SECOND CHARACTER IN
LENGTH IS TWO CHARACTERS SYMBOL BUFFER A ZERO

STORE THE VALUE IN
THE ARRAY VALUES TABLE

N

CHECK NEXT ENTRY IN THE
VARIABLES LOOK-UP TABLE
FOR MATCH WITH SYMBOL
NAME IN SYMBOL BUFFER

NO FIND YES
MATCH

STORE NEW VALUE FOR THE
VARIABLE IN THE TABLE

N

EXIT

ADVANCE TABLE POINTER

TO NEXT ENTRY POSITION
] {

IS THERE ROOM STILL
AVAILABLE IN THE TABLE

NO

YES

ERROR|

STOSYM,

STOSY1,

A

PLACE VARIABLE NAME IN
NEXT POSITION IN TABLE

STORE VALUE FOR THE
VARIABLE IN THE TABLE

LLI 201
LHIO027
LAM

NDA

JTZ STOSY1
LMI 000

LLI 204

LLM

LHI 057

JMP FSTORE

LLI370
LHI 026
LMI 000
LLI120
LDI 027
LEI 210
LAM
CPI 001
JFZ STOSY2
LLI122
LMI 000

EXIT

Load L with address of ARRAY FLAG

Load H with page of ARRAY FLAG

Fetch the value of the ARRAY FLAG into the ACC
Check to see if the flag is set indicating processing an
Array variable value. Jump ahead if flag not set.

If ARRAY FLAG was set, clear it for next time.
Then load L with address of array address storage loc
Fetch the array storage address as new pointer

1 Set Hto ARRAY VALUES page

Store the array variable value and exit to caller.

Load L with address of TEMP CNTR

** Load H with page of TEMP CNTR

Initialize the TEMP CNTR by clearing it

Load L with starting address of SYMBOL BUFFER
** Load D with page of VARIABLES LOOK-UP table
Load E with starting addr of VARIABLES LOOK-UP
Table. Fetch the (cc) for the SYMBOL BUFFER into
The ACC and see if length of variable name is just one
Character. If not, skip next couple of instructions.
Else, set pointer to second character location in the
SYMBOL BUFFER and set it to zero

STOSY?2,

STOSY 3,

STOSY5,

SAVESY,

LLI121
LHI 026

CAL SWITCH
LAM

INL

LBM

INL

CAL SWITCH
CPM

JFZ STOSY3
INL

LAB

CPM

JTZ STOSY5

CAL AD4DE
LLI 370

LHI 026
LBM

INB

LMB
LLIO77

LHI 027
LAB

CPM

JFZ STOSY2
LLIO77

LHI 027
LBM

INB

LMB

LAB

CPI 025

JFS BIGERR
LLI121

LHI 026

LBI 002
CAL MOVEIT

CAL SWITCH
CAL FSTORE
JMP CLESYM

LLI120

LHI 026

LDH

LEI 144

JMP MOVECP

Load L with address of first character in the SYMBOL
** BUFFER. Load H with page of the buffer.
Exchange pointer to buffer for pointer to VARIABLES
LOOK-UP table. Fetch first char in a name from the
Table. Advance the pointer to second char in a name.
Fetch the second character into register B.

Advance the pointer to first byte of a value in the table.
Exchange table pointer for pointer to SYMBOL BUFF
Compare first character in buffer against first character
In table entry. If no match, try next entry in the table.
If match, advance pointer to second character in buffer.
Move second character obtained from table into ACC.
Compare second characters in table and buffer.

If same, have found the variable name in the table.

Add four to pointer in registers D&E to skip over value
Portion of entry in table. Load L with address of TEMP
#% CNTR. Load H with page of TEMP CNTR.

Fetch the counter

Increment the counter

Restore it to storage

Set L to address of VARIABLES CNTR (indicates

** Number of variables currently in table.) Set H too.
Move the TEMP CNTR value into the ACC. (Number of
Entries checked.) Compare with number of entries in
The table. If have not checked all entries, try next one.
If have checked all entries, load L with address of the
** VARIABLES CNTR. Set H too. Fetch the counter
Value and increment it to account for

New variable name that will now be

Added to the table. Save the new value.

Place the new counter value into the accumulator

And check to see that adding new variable name to the
Table will not cause table overflow. Big Error if it does!
If room available in table, set L to address of first

** Character in the SYMBOL BUFFER. Set H too.

Set a counter for number of characters to transfer.
Move the variable name from buffer to table.

Exchange buffer pointer for table pointer.
Transfer new mathematical value into the table.
Clear the SYMBOL BUFFER and exit to calling routine.

The subroutines below are used by some of the routines
in this chapter as well as other parts of the program.

Load L with the address of the start of the SYMBOL
** BUFFER. Load H with the page of the buffer.
Load register D with the page of the AUX SYMBOL
BUFFER and set register E to start of that buffer.
Transfer SYMBOL BF contents to AUX SYMBOL BF

6 - 50

RESTSY, LLI144 Load L with address of start of AUX SYMBOL BUFF

LHT 026 *#* Load H with page of AUX SYMBOL BUFFER
LDH Set D to page of SYMBOL BUFFER (same as H)
LEI 120 Load E with start of SYMBOL BUFFER

MOVECP, LBM Load (cc) for source string (first byte in source buffer}
INB Add one to (c¢) to include (cc) byte itself

JMP MOVEIT Move the source string to destination buffer

EVALUATING MATHEMATICAL EXPRESSIONS

This and the next several chapters will pre-
sent the routines associated with EVALUAT-
ING mathematical expressions. While it will
take a considerable number of pages of text
to present the details and source listings of
the routines, the essential concepts of this
process remain quite simple and straightfor-
ward.

The reader who has studied the preceeding
chapter may recall that when a portion of a
statement line contained a mathematical ex-
pression that needed to be evaluated, the
routine would set up pointers to the starting
and ending characters of the expression and
then call a subroutine labeled EVAL. The
EVAL routine, which is presented in this
chapter, is able to process the string of charac-
ters making up a mathematical expression. In
doing so, it calls on several other subroutines
that will have separate chapters devoted to
their details. However, the EVAL routine is
the primary expression processing routine
that ties the supportive subroutines for this
process together.

Mathematical expressions that are to be
evaluated by SCELBAL are assumed to con-
sist of strings of characters that represent
symbols joined by operators. Symbols in this
context mean either actual numerical values
such as 123.456 or 995 or 1.14159E+15; or
they may be characters representing a vari-
able name such as X. Operators are mathe-
matical operating signs such as “+” (addi-
tion), “-”’ (subtraction or minus), “*” (multi-
plication), “/”’ (division), “ 1 > (exponentia-
tion), and such signs as “="" (equal), “<” (less
than) and “ > ” (greater than). Two special
operator signs are the right and left paren-
thesis “()” which may be used to group o¥
nest portions of mathematical expressions,
denote the argument part of a function, or be
used to indicate a subscripted variable.

A typical mathematical expression that
might appear in a SCELBAL program is il-
lustrated here:

XT2+4*%X -16

In this expression, X is a symbol (name of a
variable) as are 2, 4 and 16 (actual numerical
values). Four mathematical operators are used
in the above expression, T, *, +and - in that
order.

The process of evaluating an expression
to obtain a mathematical (numerical) value
consists of scanning the expression to break
it up into symbols and operators, and then
performing the required operations in the pro-
per order. The requirement of performing the
operations IN THE PROPER ORDER is
essential. The proper evaluation of mathe-
matical expressions requires the following of
precise rules for performing certain opera-
tions. For instance, the example expression
just presented is meant to be read as, and
evaluated in the following fashion.

“Raise the value represented by X to the
second power. To this quantity add four
times the quantity X. From this new total
subtract the value 16.”

A person who did not know the order in
which operations were to be performed ac-
cording to custom, or a computer that was
not instructed otherwise, might just as easily
interpret the example expression to mean.

“Raise X to the power of 2 plus four times
X minus 16.”

The order in which to perform various
types of operations is defined by establishing
a heirarchy for the various types of mathe-
matical operators. The portion of SCELBAL
that establishes the heirarchy and actually
determines when various mathematical opera-
tions are to be performed has been given the
label PARSER in accordance with the task it
performs. This routine will be discussed and
described in detail in the next chapter.

The EVALuating routine presented in this

chapter essentially serves to perform the fol-
lowing tasks. It breaks the mathematical ex-
pression being processed up into component
parts consisting of symbols (whether a vari-
able name or a numerical value) and mathe-
matical operators. Characters making up a
symbol are stored in the SYMBOL BUFFER.
Whenever a mathematical operator is detec-
ted, a TOKEN VALUE is assigned to repre-
sent the operator similar to the manner in
which a token value was assigned when the
SYNTAX subroutine identified a STATE-
MENT KEYWORD. This TOKEN VALUE
assigned for the mathematical operator is
passed on to another subroutine called the
PARSER (to be described in the next chap-
ter) which will either store the symbol and
operator for future use or perform the indi-
cated operations depending on the prece-
dence of the operator being processed. This
process of obtaining symbols and operators
continues until the entire expression has been
scanned.

For reference purposes, a list of the
TOKEN VALUES assigned to the various
mathematical operators is presented below.
Note that the first part of the table assigns
a TOKEN VALUE to single operators. The
latter part of the table assigns values to some
special combinations of operators which may
occur in IF statements. Later chapters will il-
lustrate how these TOKEN VALUES are used
to direct the operations of other SCELBAL
expression handling routines.

EVAL, LLI227

OPERATOR TOKEN VALUE
EOS 000
+ 001
002
003
004
005
006
007

N

011
012
013
014
015
016

vviVIA

<
<

The presence of a parenthesis in a mathe-
matical expression requires special considera-
tion. As will be detailed in following chapters,
a parenthesis may indicate grouping of terms,
or the argument portion of a function, or the
subscripted part of an array variable. When a
parenthesis is detected by the EVAL subrout-
ine, it will call on appropriate subroutines to
determine what action is to be taken as a
function of where the parenthesis occurs in an
expression.

The overall operation of the FVAL routine
is summarized in the flow chart shown on the
next several pages. The source listing starts
below.

Load L with address of ARITHMETIC STACK pointer

LHI001 ** Set H to page of ARITHMETIC STACK pointer

LMI 224 Initialize ARITH STACK pointer value to addr minus 4
INL Advance memory pointer to FUN/ARRAY STACK pntr
LHI 026 *% Set H to page of FUN/ARRAY STACK pointer

LMI 000 Initialize FUN/ARRAY STACK pointer to start of stack

CAL CLESYM Initialize the SYMBOL BUFFER to empty condition

LLI 210 Load L with address of OPERATOR STACK pointer
LMI 000 Initialize OPERATOR STACK pointer value

LLI 276 Set L to address of EVAL pointer (start of expression)
LBM Fetch the EVAL pointer value into register B

LLI 200 Set up a working pointer register in this location

LMB And initialize EVAL CURRENT pointer

{INTTIALIZING PROCED URES]

START EVALUATING
THE EXPRESSION

FETCH A CHARACTER
IN THE EXPRESSION

[SEEIFITIS A + -, *,OR /]

—0

NO YES

SET CORRESPONDING
TOKEN VALUE

YES

[CALL FUNCTION/ARRAY
SET UP SUBROUTINE

[SET TOKEN VALUE]

|SEE IF CHARACTER IS)"

\ YES
?

[SET TOKEN VALUE]

[CALL PARSER SUBROUTINE]

[PROCESS FUNCTION/ARRAY]

DECREMENT F/A
STACK POINTER

Y

[SEE IF CHARACTER IS “ 1]

[SET TOKEN VALUE]

SEE IF CHARACTER
IS u<n: £g=)y’ OR [13

NO YES

SEE IF NEXT CHARACTER
IS “<», «=» OR “>»

CONCATENATE CHARACTER
ONTO THE SYMBOL BUFFER

SET TOKEN VALUE FOR
u<n, e u>a7’ “g=",
“=3" OR “<>”

[CALL PARSER SUBROUTINE]

&)

ADVANCE POINTER AND SEE
IF AT THE END OF EXPRESSION

@ X <>ﬂ_

-—

[CALL PARSER SUBROUTINE]

{(EXIT WITH ANSWER IN FPACCI

SCAN1,

SCAN2,

SCAN3,

SCANFN,

SCAN4,

SCANS5,

SCANG,

LLI 200

CAL GETCHR
JTZ SCAN10
CPI 253

JFZ SCAN2
LLI176

LMI 001

JMP SCANFN

CPI 255

JFZ SCAN4
LLI120

LAM

NDA

JFZ SCAN3
LLI176

LAM

CPI 007

JTZ SCAN3
CPI003

JTZ SYNERR
CPI 005

JTZ SYNERR
LLI120

LMI 001

INL

LMI 260

LLI176
LMI 002

CAL PARSER
JMP SCAN10

CPI 252

JFZ SCANS
LLI176

LMI 003

JMP SCANFN

CPI 257

JFZ SCANG6
LLI176

LMI 004

JMP SCANFN

CPI 250
JFZ SCANT
LLI 230
LBM

INB

Load L with address of EVAL CURRENT pointer
Fetch a character in the expression being evaluated

If character is a space, jump out of this section

See if character is a “+”’ sign

If not, continue checking for an operator

If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for “+”’ sign in PARSER TOKEN
Go to PARSER subroutine entry point

See if character is a minus (‘*-*’) sign

If not, continue checking for an operator

If yes, check the length of the symbol stored in the
SYMBOL BUFFER by fetching the (cc) byte

And testing to see if (cc) is zero

If length not zero, then not a unary minus indicator
Else, check to see if last operator was a right parenthesis
By fetching the value in the PARSER TOKEN storage
Location and seeing if it is token value for ¢)”

If last operator was “)’’ then do not have a unary minus
Check to see if last operator was “*”’

If yes, then have a syntax error

Check to see if last operator was exponentiation

If yes, then have a syntax error

If none of the above, then minus sign is unary, put
Character string representing the

Value zero in the SYMBOL BUFFER in string format
(Character count (cc) followed by ASCII code for zero)

Set L to address of PARSER TOKEN storage location
Set PARSER TOKEN value for minus operator

Call the PARSER subroutine to process current symbol
And operator. Then jump to continue processing.

See if character fetched from expression is “**’

If not, continue checking for an operator

If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for “*’’ (multiplication) operator in
PARSER TOKEN and go to PARSER subroutine entry

See if character fetched from expression is ¢/’

If not, continue checking for an operator

If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for *“/” (division) operator in
PARSER TOKEN and go to PARSER subroutine entry

See if character fetched from expression is “(”’

If not, continue checking for an operator

If yes, load L with address of FUN/ARRAY STACK
Pointer. Fetch the value in the stack pointer. Increment
It to indicate number of “(’’ operators encountered.

SCANT,

SCANS,

SCAN9,

SCAN11,

LMB

CAL FUNARR
LLI176

LMI 006

JMP SCANFN

CPI 251

JFZ SCANS
LLI176

LMI 007
CAL PARSER
CAL PRIGHT
LLI 230

LHI 026

LBM

DCB

LME

JMP SCAN1C

CPI 336

JFZ SCANY
LLI176

LMI 005

JMP SCANFN

CPI 274

JFZ SCAN11
LLI 200

LBM

INB

LMB

CAL GETCHR
CPI 275

JTZ SCAN13
CPI 276

JTZ SCAN15
LLT 200

LBM

DCB

LMB

LLI176
LMIO11

JMP SCANFN

CPI 275

JFZ SCAN12
LLI 200

LBM

INB

LMB

CAL GETCHR

Restore the updated stack pointer back to memory

Call subroutine to process possible FUNCTION or
ARRAY variable subscript. Then set pointer to
PARSER TOKEN storage and set value for “(’’ operator
Go to PARSER subroutine entry point.

See if character fetched from expression is “)”

If not, continue checking for an operator

If yes, load L with address of PARSER TOKEN

Set PARSER TOKEN value to reflect <}

Call the PARSER subroutine to process current symbol
Call subroutine to handle FUNCTION or ARRAY
Load L with address of FUN/ARRAY STACK pointer
*¥ Set H to page of FUN/ARRAY STACK pointer
Fetch the value in the stack pointer. Decrement it

To account for left parenthesis just processed.

Restore the updated value back to memory.

Jump to continue processing expression.

See if character fetched from expression is “ 1"
If not, continue checking for an operator

If yes, load L with address of PARSER TOKEN
Put in value for exponentiation

Go to PARSER subroutine entry point.

See if character fetched is the “less than™ sign
If not, continue checking for an operator

If yes, set L to the EVAL CURRENT pointer
Fetch the pointer

Increment it to point to the next character
Restore the updated pointer vaiue

Fetch the next character in the expression

Is the character the “=’" sign?

If so, have “less than or equal” combination
Is the character the “greater than” sign?

If so, have “less than or greater than” combination

Else character is not part of the operator. Set L back
To the EVAL CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.

Have just the “less than” operator. Set L to the
PARSER TOKEN storage location and set the value for
The “‘less than” sign then go to PARSER entry point.

See if character fetched is the “=" sign

If not, continue checking for an operator

If yes, set L to the EVAL CURRENT pointer
Fetch the pointer

Increment it to point to the next character
Restore the updated pointer value

Fetch the next character in the expression

~3
o2}

SCAN12,

SCAN13,

SCAN14,

SCAN15,

SCAN16,

SCAN10,

CPI274

JTZ SCAN13
CP1 276

JTZ SCAN14
LLI 200
LBM

DCB

LMB
LLI176
LMIO12
JMP SCANFN

CPI 276

JFZ SCAN16
LLI 200

LBM

INB

LMB

CAL GETCHR
CPI 274

JTZ SCAN15
CPI 275

JTZ SCAN14
LLI 200

LBM

DCB

LMB

LLI176

LMI 013

JMP SCANFN

LLI176
LMI Q14
JMP SCANFN

LLI176
LMI 015
JMP SCANFN

LLI176
LMI 016
JMP SCANFN

CAL CONCTS

LLI20¢C
LHI 026
LBM
INE
LMB
LLI 277

o

Is the character the “less than” sign?
If so, have “less than or equal” combination

Is the character the “greater than” sign?

If so, have “‘equal or greater than” combination

Else character is not part of the operator. Set L back
To the EVAL CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.

Just have =" operator. Set L. to the PARSER TOKEN
Storage location and set the value for the “=" sign.

Go to the PARSER entry point.

See if character fetched is the “greater than” sign

If not, go append the character to the SYMBOL BUFF
If so, set L to the EVAL CURRENT pointer

Fetch the pointer

Increment it to point to the next character

Restore the updated pointer value

Fetch the next character in the expression

Is the character the “less than’ sign?

If so, have “less than or greater than’’ combination

Is the character the “="" sign?

If so, have the “equal to or greater than” combination
Else character 1s not part of the operator. Set L back
To the EVAL CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.

Have just the “greater than” operator. Set L to the
PARSER TOKEN storage location and set the value for
The “greater than” sign then go to PARSER entry

When have “less than or equal” combination set L to
PARSER TOKEN storage location and set the value.
Then go to the PARSER entry point.

When have “equal to or greater than’ combination set L
To PARSER TOKEN storage location and set the value.
Then go to the PARSER entry point.

When have ‘less than or greater than’’ combination set
L to PARSER TOKEN storage location and set value.
Then go to the PARSER entry point.

Concatenate the character to the SYMBOL BUFFER

Set L to the EVAL CURRENT pointer storage location
** Set H to page of EVAL CURRENT pointer

Fetch the EVAL CURRENT pointer value into B
Increment the pointer value to point to next character
In the expression and restore the updated value.

Set L to EVAL FINISH storage location.

~J
B
N

PARSEP,

LAM

DCB

CPB

JFZ SCAN1
JMP PARSEP
HLT

LLI176

LMI 000

CAL PARSER
LLI 227

LHI 001

LAM

CPI 230

RTZ

JMP SYNERR

Fetch the EVAL FINISH value into the accumulator.
Set B to last character processed in the expression.

See if last character was at EVAL FINISH location.

If not, continue processing the expression. Else, jump
To final evaluation procedure and test. (Directs routine
To a dislocated section.) Safety Halt in unused byte.

Load L with PARSER TOKEN storage location. Set
The value indicating end of expression. Call the
PARSER subroutine for final time for the expression.
Change L to point to the ARITH STACK pointer.

** Set H to the page of the ARITH STACK pointer.
Fetch the ARITH STACK pointer value.

Should indicate only one value (answer) in stack.
Exit with answer in FPACC if ARITH STACK is O.K.
Else have a syntax error!

THE PARSER ROUTINE

The PARSER routine is a most important
part of the mathematical expression evaluat-
ing process. The primary purpose of the
routine is to arrange numbers and operators
in an expression so that they may be per-
formed in the proper order according to a set
of rules. At appropriate times, the routine
will call on other subroutines to perform
mathematical operations.

The rules used to evaluate an expression
are established according to standard mathe-
matical practices by establishing a heirarchy
among the various mathematical operators
and following a consistant left to right pat-
tern for evaluating expressions. In SCELBAL,
the operating sign precedence is defined as
follows.

Parenthesis, when used to enclose a group
of operators and symbols (versus being used
to separate the argument of a function or to
indicate a subscripted variable), have the
highest precedence. That is, whenever a right
hand parenthesis is encountered, all of the
operations signified by operators between it
and the initiating left hand parenthesis, must
be performed before any further processing
is attempted.

Individual operators are assigned prece-
dence according to the following heirarchy.
Exponentiation has highest precedence. Next
are the multiplication and division operators
(having equal precedence to each other). Then
comes the plus or minus operator. The lowest
operator precedence is assigned to the equal,
less than, or greater than operators (or com-
binations).

How do the rules of precedence enable the
PARSER routine to correctly analyze mathe-
matical expressions? They enable the program
to determine whether to perform an opera-
tion between two symbols (numbers) joined
by an operator, or whether to hold the values
until more data is obtained! The process in-
volves the use of stacking operations as will

be explained now.

The reader may recall from the previous
chapter that each time the PARSER sub-
routine is called by EVAL, the routine will
have placed a symbol (either a variable name
or a number) in the SYMBOL BUFFER (un-
less the end of the expression had been
reached which is a special case). Addition-
ally, an operator TOKEN VALUE will have
been set up for use by the PARSER routine.

The contents of the SYMBOL BUFFER
are converted to a number in floating point
format (using subroutines that will be pre-
sented in a later chapter). This number (which
will reside in a special set of registers called
the FPACC) will be considered as the top-
most entry in an ARITHMETIC STACK for
the purposes of the following discussion.
The primary task of the PARSER is to
obtain the precedence value of the operator
currently being processed and determine
whether or not an actual mathematical
operation should be performed. This sim-
ple decision of whether or not to perform
an operation is made by comparing the
precedence of the current operator against
any previous operator(s) it has received. If
the precedence of the current operator is
greater than the previous operator, then the
operator is saved on an OPERATOR STACK.
Remember, the numerical value of the sym-
bol being processed has already been placed
on the top of an ARITHMETIC STACK.
Both of these stacks are configured as push-
down, pop-up stacks (first in, last out). If the
precedence of the operator just received is
equal to or less than the previous operator
(on the top of the OPERATOR STACK),
then the operation indicated by the operator
sign on the top of the OPERATOR STACK is
performed between the two top-most num-
bers in the ARITHMETIC STACK. After this
is done, the operator is removed from the
OPERATOR STACK. The two values in the
top of the ARITHMETIC STACK are re-
placed by the answer just obtained by per-

forming the operation. (It is important to
note that the number in the top of the
arithmetic stack operates on the number be-
neath it in the stack. For instance, for division
the number in the top of the stack will be the
divisor, the next number down will be the
dividend. At the end of the operation, both
the divisor and dividend will be removed from
the arithmetic stack. The quotient obtained
from the division process will be on the top
of the arithmetic stack.) After cases where a
precedence test results in an operation being
performed, the precedence test is repeated
against the next entry in the OPERATOR
STACK (unless the stack is empty). Remem-
ber, since the operator for the operation just
performed wili be removed from the stack,
any previous operator(s) stored in the stack
will be popped-up to place a new operator in
the top position. When a point is reached
where the precedence fails (that is, the pre-
cedence of the current operator is greater
than the sign at the top of the OPERATOR
STACK), then the current operator sign is
placed on the top of the stack. The routine
then returns to the EVAL routine which will
get the next symbol/operator pair!

The above explanation of the primary
purpose of the PARSER routine may seem
a bit complicated when first read. Indeed,
the PARSER routine is perhaps the most
complicated portion of SCELBAL. The ac-
tual operaticn of the major portion of the
routine just described may be made some-
what clearer by following the evaluation of
an example expression on a step-by-step
basis.

Suppose the program
mathematical expression:

is evaluating the

X1tT2+4%X - 16

When the EVAL routine (presented in the
preceeding chapter) starts processing the ex-
pression from left to right it will first pick
up the symbol X and the operator “ 1
which it will pass to the PARSER routine.
Since the expression is just starting to be pro-
cessed, both the ARITHMETIC STACK and

the OPERATOR STACK will be empty.

When the PARSER routine receives the
symbol X it will determine that it is a variable
name. It will call on a routine to ascertain
the current value of X from a VARIABLES
TABLE. This value will be placed (using
floating point format) in the top of the
ARITHMETIC STACK.

The TOKEN VALUE for the operator
sign passed to the PARSER routine will
be used to assign a precedence value to the
operator using a precedence look-up table.
The precedence of the operator will then
be compared to the precedence of the
operator currently at the top of the
OPERATOR STACK. Since, at this point,
the OPERATOR STACK will be empty,
the current operator sign will be placed on the
top of the OPERATOR STACK. Thus, at this
point, the ARITHMETIC STACK and the
OPERATOR STACK would have the follow-
ing contents:

AS OS

(Remember, the value shown as being the top-
most entry on the ARITHMETIC STACK in
this discussion will actually be stored in the
floating point accumulator (FPACC). This
view simplifies the concept being explained.)

The PARSER routine at this point would
return control back to the EVAL routine
which would proceed to bring the next sym-
bol and operator in the expression into appro-
priate buffers. For the example being presen-
ted this would mean the number 2 would be
placed in the SYMBOL BUFFER. The token
value for the operator “+” would be placed in
the TOKEN VALUE register.

When the PARSER routine was again called
upon, it would proceed to convert the num-
ber 2 into floating point format and store it
as the top-most entry in the ARITHMETIC

STACK. The precedence for the “+” operator
would be obtained and compared against that
of the top-most entry in the OPERATOR
STACK. At this point the two stacks would
appear as:

AS 08

27?
X

The precedence of the current operator (plus
sign) would be lower than that of the expo-
nentiation sign on the top of the OPERATOR
STACK. At this point, the operation dictated
by the operator in the top of the OPERATOR
STACK is performed on the top two numbers
in the ARITHMETIC STACK (as indicated by
the arrows in the above diagram). At the com-
pletion of this operation, the numerical result
of the operation will be stored on the top of
the ARITHMETIC STACK in place of the
two original values that were operated on.
The OPERATOR STACK will now be empty
because the operator is removed from the
stack once the operation has been performed.
Since there are no more operators on the
stack to compare against, the current “+”
operator will be placed on the top of the
OPERATOR STACK. The two stacks will
now appear as shown here:

AS 0S

X12 +

The program will then return back to the
EVAL routine to obtain the next symbol and
operator in the expression being processed.
The next time the PARSER subroutine is
entered the number 4 will be in the SYMBOL
BUFFER and the token for the operator “*”
(multiplication) will be in the TOKEN
VALUE register. Since the precedence of the
“*> gign is higher than the *+” sign on the
top of the OPERATOR STACK, the new sign
will be placed on the top of the stack. The

two stacks will now contain:

AS 0S
4 *
XT2 +

The program will return back to the
EVAL routine which will proceed to ob-
tain the symbol X and the operator -
from the expression. The value for X will
be placed on the top of the ARITHMETIC
STACK by the PARSER. The two stacks
will now contain:

AS OS
X ———— *
L 4
XT2

Since the minus sign operator obtained
by the routine has a lower precedence than
the multiplication sign in the top of the
OPERATOR STACK, the multiplication
operation is performed between the two
top entries in the ARITHMETIC STACK
as indicated in the above diagram. At the
completion of this operation, the two
stacks will contain:

AS 0S8

4 %X ——s +

XT2

At this point the current operator is com-
pared with the sign which has just been
popped-up to the top of the OPERATOR
STACK. The current operator, being the
minus sign, has the same precedence as the
plus sign. This means the operation at the
top of the operator stack must be perfor-
med. (Remember, if the precedence test
results in the current operator being less

than OR EQUAL to the precedence of the
operator in the top of the stack, that the
operation is performed!) This operation is
signified by the arrows in the diagram just
presented. At the conclusion of this opera-
tion, the two stacks will hold:

AS O

XT2 +4*X -

Once again the program will return to the
EVAL routine which will proceed to pick up
the final symbol in the expression (16) and
then find the end of the expression. When the
end of the expression is found, a special token
value of zero is set up in place of an operator
sign. This special zero token value has a prece-
dence lower than any operator. When the
symbol value is placed on the ARITHMETIC
STACK by the PARSER routine the two
stacks will register:

AS (OF]

16 ——» -

X12 + 45X —

Since the zero token value has a lower
precedence than any operator, it means that
any operators on the OPERATOR STACK
will have to be performed to complete the
evaluation of the expression. In the example
there is only one operator left on the stack.
This operation is performed. The OPERA-
TOR STACK will then be empty. The
ARITHMETIC STACK will contain the final
value of the complete expression:

AS (O}

X1T2 + 4*X - 16 empty

The PARSER has performed its primary task!

In performing its primary task as just
explained in detail, the PARSER routine
has several subsections that perform re-
lated tasks. One such section is able to
look-up the values of variable names in the
VARIABLES TABLE and obtain the cur-
rent value for the variable if the name is
already present in the table. If it is not
found in the table, the symbolic name is
entered in the table and the initial value
of zero is assigned to the variable.

Another subsection of the PARSER
routine is a subsection that directs the pro-
gram to perform specific mathematical
operations when the PARSER has deter-
mined that they should be executed. This
portion of the program uses the TOKEN
VALUE assigned to the operator sign to
determine which mathematical subroutines
to call in order to execute the operation. The
operation is performed using the top two
entries in the ARITHMETIC STACK. Some
of these operations, such as addition, sub-
traction, multiplication and division are per-
formed by simply calling on appropriate parts
of a floating point arithmetic package which
is an integral part of SCELBAL. (This package
is discussed in a separate chapter.)

However, a special group of operations in-
volving the equal, less than, and greater than
operators, are slightly more complex and are
processed by individual routines that are pre-
sented as subsections in this chapter. These
special operators have a very low precedence
in the precedence heirarchy. These operators
are used to actually perform comparison
operations between the two top values
in the ARITHMETIC STACK. If the com-
parison condition specified (such as less
than, greater than etc., or combinations of
these conditions) is found to be TRUE, then
the result left in the ARITHMETIC STACK
will be the value one. If the condition is not
satisfied, the value zero will be left in the
ARITHMETIC STACK. Thus, the PARSER
is able to process conditional expressions
such as those made in IF statements!

The handling of the unary minus sign by
the EVAL and PARSER is a special case that
should be understood by the reader. The
unary minus sign is considered to be simply
the case when a number is being negated
(instead of subtracted). The EVAL and
PARSER handle the unary minus sign by
subtracting the value to be negated from zero.
For instance, the evaluation of an expression
such as:

A+ -B
will actually be processed as:
A + (0-B)

The reader may review the preceeding chapter
to see that whenever the EVAL routine picks
up a unary minus sign in an expression, it will
load the SYMBOL BUFFER with the value
zero so that the PARSER will perform the
negation on the next symbol that is passed to
it. Because of the method used to handle the
unary minus case, expressions are prohibited
from containing double operators such as:

A*-B or AT-B

because they would be processed as:

A¥0-B or ATO0-B
(A times zero minus B or A raised to the zero
power, with B subtracted from the result.)

Thus, when using the unary minus sign
with such operators, it is necessary to enclose
the value to be negated in parenthesis thus:

A * (-B) or A T (-B)
Expressions so stated can then be handled
correctly by the EVAL and PARSER sub-
routines. (The reader may review the EVAL
routine to see that incorrect use of the unary
minus sign in expressions will result in a syn-
tax error message being generated.)

The flow of operations handled by the
PARSER is illustrated by the flow chart pre-
sented on the next several pages. The source
listing starts below.

PARSER, LLI120 Load L with starting address of SYMBOL BUFFER

LHI 026 ** Load H with page of SYMBOL BUFFER
LAM Fetch the (cc) for contents of SYMBOL BUFFER
NDA Into the ACC and see if buffer is empty
JTZ PARSE If empty then no need to convert contents
INL If not empty, advance buffer pointer
LAM Fetch the first character in the buffer
CPI 256 See if it is ASCII code for decimal sign
JTZ PARNUM If yes, consider contents of buffer to be a number
CPI 260 If not decimal sign, see if first character represents
JTS LOOKUP A decimal digit, if not, should have a variable
CPI 272 Continue to test for a decimal digit
JFS LOOKUP If not, go look up the variable name

PARNUM, DCL If SYMBOL BUFFER contains number, decrement
LAM Buffer pointer back to (cc) and fetch it to ACC
CPI 001 See if length of string in buffer is just one
JTZ NOEXPO If so, cannot have number with scientific notation
ADL If not, add length to buffer pointer to
LLA Point to last character in the buffer
LAM Fetch the last character in buffer and see if it
CPI 305 Represents letter E for Exponent

C

—_—

——

N

BUFFER

SEE IF SYMBOL |

IS EMPTY!

NC

1

S~ YES j/:\

L

|
|SEE IF SYMBOL BUFFER
| CONTAINS

A

i
|

NO t YES
?

A NUMBER

SEE IF LAST CHARACTER

IN THE BUFFER IS AN “E”
T

!
NO)\ YES
—<—< 7 >
-

APPEND OPERATOR ONTO!

ey THE SYMBOL BUFFER
PLACE THE PRESENT !
CONTENTS OF THE .
“FPACC” (FLOATING ,/J\‘,
POINT ACCUMULATOR) { EXTT
ON THE TOP OF THE \
ARITHMETIC STACK

CONVERT THE CONTENTS
OF THE SYMBOL BUFFER
TO FLOATING POINT FORMAT
IN THE “FPACC” (VIRTUAL NEW
TOP OF ARITHMETIC STACK)

SEE IF THE NAME IN THE
SYMBOL BUFFER IS IN THE
VARIABLES LOOK-UP TABLE

I

NO YES

PLACE THE SYMBOL NAME
IN THE VARI%BLES TABLE

i
ASSIGN AN INITIAL VALUE
OF ZERC FOR THE VARIABLE

PLACE THE PRESENT CONTENTS
OF THE “FPACC” ON THE TOP
OF THE ARITHMETIC STACK

LOAD THE VALUE FOR THE
VARIABLE INTO THE “FPACC”
(VIRTUAL TOP OF ARITH STACK)

[CLEAR THE SYMBOL BUFFER]

SEE IF CURRENT OPERATOR)|
IS A RIGHT PARENTHESIS

?\ YES

SEE IF HEIRARCHY OF CURRENT
OPERATOR IS LESS THAN OR
EQUAL TO HEIRARCHY OF THE
OPERATOR ON THE TOP OF
THE OPERA!TOR STACK

\Z

&-7

YES

PLACE OPERATOR TOKEN
VALUE ON TOP OF THE
OPERATOR STACK

FETCH OPERATOR TOKEN

VALUE FROM TOP OF THE

OPERATOR STACK. SEE IF
IT TOKEN FOR END OF STACK

YES
EXIT

CALL SUBROUTINE TO PERFORM
OPERATION INDICATED BY THE
OPERATOR THAT WAS IN STACK

FETCH OPERATOR TOKEN

VALUE FROM TOP OF THE

OPERATOR STACK. SEE IF
IT TOKEN FOR END OF STACK

NO YES

-]

SEE IF TOKEN FOR
LEFT PARENTHESIS

YES

—{ERROR

D

CALL SUBROUTINE TO PERFORM
OPERATION INDICATED BY THE

OPERATOR THAT WAS IN STACK

<C5
@
A

VIRTUAL TOP OF ARITHMETIC
STACK IS IN THE “FPACC.”
POP THE ACTUAL TOP ENTRY
IN THE ARITHMETIC STACK INTO
THE “FPOP” (FLOATING POINT
OPERAND) REGISTERS. PERIFORM

THE OPERATION [INDICATED BY

THE OPERATOR REMOVED FRUM
THE OPERATOR STACK JUST
BEFORE THIS SUBROUTINE WAS
CALLED. VALUE IN THE “FPACC”’
(VIRTUAL TOP OF ARITHMETIC
STACK) OPERATES ON VALUE IN
“FPOP” (ACTUAL TOP OF ARITH-
METIC STACK). ANSWER IS LEFT
IN THE “FPACC” (VIRTUAL TOP
OF THE ARITHMETIC STACK)

N

NOEXPO,

LOOKUP,

LOOKU1,

LOOKUZ2,

JFZ NOEXPO
LLI 200

CAL GETCHR
JMP CONCTS

LLI 227

LHI 001
LAM

ADI 004
LMA

LLA

CAL FSTORE
LLI120
LHI026

CAL DINPUT
JMP PARSE

LLI 370
LHI 026
LMI 000
LLI120
LDI1027
LEI 210
LAM
CPI001
JFZ LOOKU1
LLI122
LMI 000

LLI121
LHIO026

CAL SWITCH
LAM

INL

LBM

INL

CAL SWITCH
CPM

JFZ LOOKU2
INL

LAB

CPM

JTZ LOOKU4

CAL AD4DE
LLI 370

LHI 026
LBM

INB

LMB
LLIO77

If not, cannot have number with scientific notation
If yes, have part of a scientific number, set pointer to
Get the operator that follows the E and append it to
The SYMBOL BUFFER and return to EVAL routine

Load L with address of ARITHMETIC STACK pointer
** Load H with page of ARITHMETIC STACK pointer
Fetch AS pointer value to ACC and add four to account
For the number of bytes required to store a number in
Floating point format. Restore pointer to memory.
Then, change L to point to entry position in the AS
Place contents of the FPACC onto top of the AS
Change L to point to start of the SYMBOL BUFFER
** Set H to page of the SYMBOL BUFFER

Convert number in the buffer to floating point format
In the FPACC then jump to check operator sign.

Load L with address of LOOK-UP COUNTER

#* Load H with page of the counter

Initialize the counter to zero

Load L with starting address of the SYMBOL BUFFER
** Load D with page of the VARIABLES TABLE
Load E with start of the VARIABLES TABLE

Fetch the (cc) for the string in the SYMBOL BUFFER
See if the name length is just one character. If not,
Should be two so proceed to look-up routine. Else,
Change L to second character byte in the buffer and set
It to zero to provide compatibility with entries in table

Load L. with addr of first character in the SYMBOL

#* BUFFER. Set H to page of the SYMBOL BUFFER.
Exchange contents of D&E with H&L so that can
Fetch the first character of a name in the VARIABLES
TABLE. Advance the table pointer and save the
Second byte of name in B. Then advance the pointer
Again to reach first byte of floating point formatted
Number in table. Now exchange D&E with H&L and
Compare first byte in table against first char in buffer
If not the same, go try next entry in table. If same,
Advance pointer to next char in buffer. Transfer the
Character in B (second byte in table entry) to the ACC
Compare it against second character in the buffer.

If match, have found the name in the VARIABLES tbl.

Call subroutine to add four to the pointer in D&E to
Advance the table pointer over value bytes. Then set

#% Up H and L to point to LOOK-UP COUNTER.
Fetch counter value (counts number of entries tested

In the VARIABLES TABLE), increment it

And restore it back to memory

Load L with address of SYMBOL VARIABLES counter

8-10

LOOKU4,

PARSE,

LHI 027
LAB

CPM

JFZ LOOKU1
LLIO77

LHI 027
LBM

INB

LMB

LAB
CPI025

JFS BIGERR
LLI121

LHI 026

LBI 002
CAL MOVEIT
LLE

LHD

XRA

LMA

INL

LMA

INL

LMA

INL

LMA

LAL

SUI 004
LEA

LDH

CAL SAVEHL
LLI 227

LHI 001

LAM

ADI 004
LMA

LLA

CAL FSTORE
CAL RESTHL
CAL SWITCH
CAL FLOAD

CAL CLESYM
LLI176

LAM

CPI1007

JTZ PARSE2
ADI 240

LLA

LBM

** Do same for H. (Counts number of names in table.)
Place LOOK-UP COUNTER value in the accumulator.
Compare it with number of entries in the table.

If have not reached end of table, keep looking for name.
If reach end of table without match, need to add name
** To table. First set H & L to the SYMBOL
VARIABLES counter. Fetch the counter value and
Increment to account for new name being added to the
Table. Restore the updated count to memory. Also,
Move the new counter value to the accumulator and
Check to see that table size is not exceeded. If try to
Go over 20 (decimal) entries then have BiG error.

Else, set L to point to first character in the SYMBOL
** BUFFER and set H to proper page. Set the number
Of bytes to be transferred into register B as a counter.
Move the symbol name from the buffer to the
VARIABLES TABLE. Now set up H & L with value
Contained in D & E after moving ops (points to first
Byte of the value to be associated with the symbol
Name.) Clear the accumulator and place zero in all four
Bytes associated with the variable name entered

In the VARIABLES TABLE

In order to

Assign an

Initial value

To the variable name

Then transfer the address in L to the accumulator
Subtract four to reset the pointer to start of zeroing ops
Restore the address in D & E to be in same state as if
Name was found in the table in the LOOKUP routine

Save current address to VARIABLES TABLE

Load L with address of ARITHMETIC STACK pointer
** Load H with page of the pointer

Fetch the AS pointer value to the accumulator

Add four to account for next floating point formatted
Number to be stored in the stack. Restore the stack
Pointer to memory and set it up in register L too.
Place the value in the FPACC on the top of the
ARITHMETIC STACK. Restore the VARIABLES
TABLE pointer to H&L and move it to D&E. Now load
The VARIABLE value from the table to the FPACC.

Clear the SYMBOL BUFFER

Load L with address of PARSER TOKEN VALUE

And fetch the token value into the accumulator

Is it token value for right parenthesis “)”’ ? If so, have
Special case where must perform ops til find a “(*” !
Else, form address to HEIRARCHY IN table and

Set L to point to HEIRARCHY IN VALUE in the table
Fetch the heirarchy value from the table to register B

8-11

PARSE1L,

PARSEZ,

LLI 210

LCM

CAL INDEXC
LAM

ADI 257

LLA

LAB

CPM

JTZ PARSE1
JTSPARSE1
LLI176

LBM

LLI 210

LCM

INC

LMC

CAL INDEXC
LMB

RET

LLI210
LAM

ADL

LLA

LAM

NDA

RTZ

LLI 210
LCM

DCC

LMC

CAL FPOPER
JMP PARSE

LLI210

LHI 026

LAM

ADL

LLA

LAM

NDA

JTZ PARNER
LLI 210

LCM

DCC

LMC

CPI 006

RTZ

CAL FPOPER
JMP PARSE2

Set L to OPERATOR STACK pointer storage location
Fetch the OS pointer into CPU register C

Add OS pointer to address of OS pointer storage loc
Fetch the token value for the operator at top of the OS
And form address to HEIRARCHY OUT table

Set L to point to HEIRARCHY OUT VALUE in the
Table. Move the HEIRARCHY IN value to the ACC.
Compare the HEIRARCHY IN with the HEIRARCHY
OUT value. If heirarchy of current operator equal to or
Less than operator on top of OS stack, perform
Operation indicated in top of OS stack. Else, fetch the
Current operator token value into register B.

Load L with address of the OPERATOR STACK pntr
Fetch the stack pointer vaiue

Increment it to account for new entry on the stack
Restore the stack pointer value to memory

Form pointer to next entry in OPERATOR STACK
Place the current operator token value on top of the OS
Exit back to the EVAL routine.

Load L with address of the OPERATOR STACK pntr
Fetch the stack pointer value to the accumulator

Add in the value of the stack pointer address to form
Address that points to top entry in the OS

Fetch the token value at the top of the OS to the ACC
Check to see if the token value is zero for end of stack
Exit back to the EVAL routine if stack empty

Else, reset L to the OS pointer storage location

Fetch the pointer value

Decrement it to account for operator removed from
The OPERATOR STACK and restore the pointer value
Perform the operation obtained from the top of the OS
Continue to compare current operator against top of OS

Load L with address of the OPERATOR STACK pntr
** Load H with page of the pointer

Fetch the stack pointer value to the accumulator

Add in the value of the stack pointer address to form
Address that points to top entry in the OS

Fetch the token value at the top of the OS to the ACC
Check to see if the token value is zero for end of stack
If end of stack, then have a parenthesis error condx
Else, reset L to the OS pointer storage location

Fetch the pointer value

Decrement it to account for operator removed from
The OPERATOR STACK and restore the pointer value
Check to see if token value is “(”" to close parenthesis
If so, exit back to EVAL routine.

Else, perform the op obtained from the top of the OS
Continue to process data in parenthesis

FPOPER,

PARNER,

LT,

LLI371
LHI 026
LMA

LLI 227
LHI 001
LAM

LLA

CAL OPLOAD
LLI 227
LAM

SUI 004
LMA
LLI371
LHI 026
LAM

CPI 001
JTZ FPADD
CPI 002
JTZ FPSUB
CP1 003
JTZ FPMULT
CP1004
JTZ FPDIV
CPI1 005
JTZ INTEXP
CPI 011
JTZ LT
CPIO12
JTZ EQ

CPI 013
JTZ GT
CP1014
JTZ LE

CPI 015
JTZ GE

CPI 016
JTZ NE

LLI 230
LHI 026
LMI 000
LAI 311
LCI 250
JMP ERROR

CAL FPSUB
L1LI126
LAM

NDA

JTS CTRUE
JMP CFALSE

Load L with address of TEMP OP storage location

** Load H with page of TEMP OP storage location
Store OP (from top of OPERATOR STACK)

Change L to address of ARITHMETIC STACK pointer
** L,oad H with page of AS pointer

Fetch AS pointer value into ACC

Set L to top of ARITHMETIC STACK

Transfer number from ARITHMETIC STACK to FPOP
Restore pointer to AS pointer

Fetch the pointer value to the ACC and subtract four
To remove top value from the ARITHMETIC STACK
Restore the updated AS pointer to memory

Set L to address of TEMP OP storage location

** Set H to page of TEMP OP storage location

Fetch the operator token value to the ACC

Find out which kind of operation indicated

Perform addition if have plus operator

If not plus, see if minus

Perform subtraction if have minus operator

If not minus, see if multiplication

Perform multiplication if have multiplication operator
If not multiplication, see if division

Perform division if have division operator

If not division, see if exponentiation

Perform exponentiation if have exponentiation operator
If not exponentiation, see if “less than’’ operator
Perform comparison for “less than” op if indicated

If not “less than’ see if have “equal” operator

Perform comparison for “equal” op if indicated

If not “equal” see if have “greater than” operator
Perform comparison for “greater than” op if indicated
If not “greater than” see if have “less than or equal’ op
Perform comparison for the combination op if indicated
See if have “‘equal to or greater than” operator

Perform comparison for the combination op if indicated
See if have “less than or greater than” operator

Perform comparison for the combination op if indicated

If cannot find operator, expression is not balanced
**% Set H and L to address of F/A STACK pointer
Clear the F/A STACK pointer to re-initialize

Load ASCII code for letter I into the accumulator
And code for “(” character into register C

Go display I(for “Imbalanced Parenthesis) error msg

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Positive or negative. Set up the FPACC as a function
Of the result obtained.

8-13

EQ,

GT,

LE,

GE,

NE,

CTRUE, FPONE,

CFALSE,

AD4DE,

CAL FPSUB
LLI126
LAM

NDA

JTZ CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JTZ CFALSE
JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JTZ CTRUE
JTS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JTZ CFALSE

LLI 004
JMP FLOAD

LLI127
LMI 000
JMP FPZERO

LAE
ADI 004
LEA
RET

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Equal. Set up the FPACC as a function

Of the result obtained.

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Positive, Negative, or Equal. Set up the FPACC

As a function

Of the result obtained.

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Positive, Negative, or Equal. Set up the FPACC

As a function

Of the result obtained

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Positive or Negative. Set up the FPACC

As a function of the result obtained

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACC to the accumulator and test to see if result is
Equal. Set up the FPACC as a function of the result.

Load L with address of floating point value +1.0
Load FPACC with value +1.0 and exit to caller

Load L with address of FPACC Exponent register
Set the FPACC Exponent to zero and then set the
Mantissa portion of the FPACC to zero. Exit to caller.

Subroutine to add four to the value in register E.
Move contents of E to the ACC and add four.
Restore the updated value back to register E.
Return to the calling routine.

INTEXP,

MULOOP,

DVLOOP,

LLI126

LHI 001
LAM

LLI003

LMA

NDA

JTZ FPONE
CTS FPCOMP
CAL FPFIX
LLI124

LBM

LLIO13

LMB

LL1134

LEI 014

LHI 001

LDH

LBI 004

CAL MOVEIT
CAL FPONE
LLI 003
LAM

NDA

JTS DVLOOP

LLI014

CAL FACXOP
CAL FPMULT
LLIO13

LBM

DCB

LMB

JFZ MULOOP
RET

LLIO14

CAL FACXOP
CAL FPDIV
LLIO013

LBM

DCB

LMB

JFZ DVLOOP
RET

Load L with address of MSW of FPACC (Floating Point
** ACCumulator). Load H with page of FPACC.

Fetch MSW of the FPACC into the accumulator.

Load L with address of EXP TEMP storage location
Store the FPACC MSW value in EXP TEMP location
Test contents of the MSW of the FPACC. If zero, then
Set FPACC equal to +1.0 (any nr to zero power = 1.0!)
If MSW indicates negative number, complement

The FPACC. Then convert floating point number to
Fixed point. Load L with address of LSW of fixed nr
Fetch the LSW into CPU register B.

Set L to address of EXPONENT COUNTER

Place the fixed value in the EXP CNTR to indicate
Number of multiplications needed (power). Now set L
To LSW of FPOP and E to address of FP TEMP (LSW)
** Set H to floating point working area page.

Set D to same page address.

Set transfer (precision) counter. Call subroutine to move
Contents of FPOP into FP TEMP registers to save
Original value of FPOP. Now set FPACC to +1.0.

Load L with pointer to original value of FPACC
(Stored in FP TEMP) MSW and fetch contents to ACC.
Test to see if raising to a negative power. If so, divide
Instead of multiply!

Load L with address of LSW of FP TEMP (original
Value in FPOP). Move FP TEMP into FPOP.
Multiply FPACC by FPOP. Result left in FPACC.
Load L with address of EXPONENT COUNTER.
Fetch the counter value

Decrement it

Restore it to memory

If counter not zero, continue exponentiation process
When have raised to proper power, return to caller.

Load L with address of LSW of FP TEMP (original
Value in FPOP). Move FP TEMP into FPOP.

Divide FPACC by FPOP. Result left in FPACC.
Load L with address of EXPONENT COUNTER
Fetch the counter value

Decrement it

Restore to memory

If counter not zero, continue exponentiation process
When have raised to proper power, return to caller.

FUNCTION AND OPTIONAL ARRAY HANDLING ROUTINES

When a mathematical expression is being
evaluated by SCELBAL the presence of a
parenthesis sign can indicate one of three
possible conditions. The parenthesis may
simply be used to group parts of a mathe-
matical formula such as in the example:

(X +2)*(X-3)/(X +4)

When parentheses are used in this manner,
they are processed by the appropriate por-
tions of the EVAL and PARSER routines
previously described.

A second way in which parentheses may
be used is when they isolate the argument
portion of a function, such as in the examples
illustrated here:

INT(X)
or
RND(0)
or
TAB(12)

The third case in which a parenthesis may
be used is to indicate the subscripted part of
an array variable:

A1), A(2), ... A(8)

such as would occur for an array that had a
DIMension of eight.

SCELBAL must be capable of distinguish-
ing the purpose of a parenthesis whenever one
is encountered and taking appropriate action
once that purpose has been ascertained.

The process of determining the purpose of
a parenthesis is handled by a subroutine to be
presented shortly referred to by the label
FUNARR (FUNction or ARRay handler).
This subroutine is called bv the EVAL routine

presented previously whenever it encounters
a left hand (““(’) parenthesis sign while pro-
cessing an expression. The flow chart on the
next page illustrates the basic operation of the
FUNARR subroutine.

Essentially, the subroutine first determines
whether the parenthesis is simply being used
to group mathematical terms by checking to
see if there is anything in the SYMBOL
BUFFER. If there is anything in the symbol
buffer it should either be the name of a func-
tion or the symbolic name for an array
variable. A check for a function name is made
by scanning a FUNCTION LOOK-UP table
for a match between an entry in it and the
character string in the SYMBOL BUFFER.
Upon finding a match, a FUNCTION TOKEN
VALUE is set up in a stack called the F/A
STACK. This token value for a function will
always be positive in value. (It is simply the
position of the function name in the name
table!) If the data in the SYMBOL BUFFER
does not represent a function name, and if
the user desires to utilize the optional array
handling capability of SCELBAL, another
subroutine (labeled FUNARZ2) is called upon
to see if the character in the SYMBOL
BUFFER is an array variable by looking for
a match with it in the ARRAY VARIABLES
TABLE (discussed previously in the chapter
describing the optional DIM statement). If
the name is found in the table, a negative
token value (corresponding to the position of
the array name in the table) is established and
placed in the F/A STACK.

The routine that handles the processing of
subscripted array names is left out of the
program if the user does not desire to incor-
porate the optional DIM statement and
associated capability in SCELBAL. If it is left
out, the reference instruction to it is changed
to a no-operation instruction (indicated in the
listing by the @@ notation) so that the
routine will issue an error message if the
program user attempts to subscript a variable
when array capability is not implemented.

SEE IF ANYTHING IN
THE SYMBOL BUFFER

NO YES

NOT A FUNCTION OR ARRAY
(SIMPLE GROUPING PAREN)

LOOK FOR MATCH BETWEEN
CONTENTS OF THE SYMBOL
BUFFER AND AN ENTRY IN

THE FUNCTION LOOK-UP TABLE

NO YES

PLACE TOKEN VALUE FOR THE
FUNCTION ON TOP OF F/A STACK

ERROR]

LOOK FOR MATCH BETWEEN
CONTENTS OF SYMBOL BUFFER
AND AN ENTRY IN THE
ARRAY VARIABLES TABLE

PLACE NEGATIVE TOKEN VALUE
ON TOP OF THE F/A STACK

FUNARR,

FUNARI,

FAERR,

FUNARA,

LLI120
LHI 026
LAM
NDA
RTZ
LLI 202
LHI 027
LMI 000

LLI 202

LHI 027

LBM

INB

LMB

LCI 002

LLI 274

LHI 026

CAL TABADR
LDI 026

LEI 120

CAL STRCP
JTZ FUNAR4
LLI 202

LHI 027

LAM

CPI 010

JFZ FUNAR1
LLI 202

LHI 027

LMI 000

JMP FUNAR2

LLI 230
LHI 026
LMI 000
LAI 306
LCI 301
JMP ERROR

LLI 202

LHI 027

LBM

LLI 230

LHI 026

LCM

CAL INDEXC
LMB

JMP CLESYM

Load L with starting address of SYMBOL BUFFER
** Load H with page of SYMBOL BUFFER

Fetch the (cc) for contents of buffer to the ACC
See if (cc) is zero, if so buffer is empty, return to
Caller as have simple grouping parenthesis sign

Else set L. to TEMP COUNTER location

** Set H to TEMP COUNTER page

Initialize TEMP COUNTER to zero

Load L with address of TEMP COUNTER

** Load H with page of TEMP COUNTER

Fetch the counter value to register B

Increment the counter

Restore the updated value to memory

Initialize C to a value of two for future ops

Load L with starting address (less four) of FUNCTION
** LOOK-UP TABLE. Set H to table page.

Find address of next entry in the table

** Load D with page of SYMBOL BUFFER

Load E with starting address of SYMBOL BUFFER
Compare entry in FUNCTION LOOK-UP TABLE with
Contents of SYMBOL BUFFER. If find match, go set
Up the function token value. Else, set L to the TEMP
** COUNTER and set H to the proper page. Fetch the
Current counter value and see if have tried all eight
Possible functions in the table.

If not, go back and check the next entry.

If have tried all of the entries in the table, set L

** As well as H to the address of the TEMP COUNTER
And reset it to zero. Now go see if have subscripted
@@ Array (unless array capability not in program).

Load L with address of F/A STACK pointer

** Load H with page of F/A STACK pointer
Clear the F/A STACK pointer to reset on an error
Load the ASCII code for letter F into the ACC
Load the ASCII code for letter A into register C
Go display the F A error message

Load L with address of TEMP COUNTER

** Set H to page of TEMP COUNTER

Load value in counter to register B. This is FUNCTION
TOKEN VALUE. Change L to F/A STACK pointer.

** L,oad H with page of F/A STACK pointer.

Fetch the F/A STACK pointer value into register C.
Form the address to the top of the F/A STACK.

Store the FUNCTION TOKEN VALUE in the F/A
STACK. Then exit by clearing the SYMBOL BUFFER.

9-3

TABADR,
TABAD1,

FUNARZ2,

FUNARS,

LAB

RLC

DCC

JFZ TABAD1
ADL

LLA

RFC

INH

RET

LLI 202

LHI 027

LBM

INB

LMB

LCI002
LLI114

LHI 027

CAL TABADR
LDI 026

LEI 120

CAL STRCP
JTZ FUNAR3
LLI 202

LHI 027

LAM

LLIO75

CPM

JFZ FUNAR2
JMP FAERR

LLI 202

LHI 027

XRA

SBM

LMA

JMP FUNAR4

Move the TEMP COUNTER value from B to ACC
Multiply by four using this loop to form value equal
To number of bytes per entry (4) times current entry
In the FUNCTION LOOK-UP TABLE.

Add this value to the starting address of the table.
Form pointer to next entry in table

If no carry return to caller

Else, increment H before

Returning to caller

The following routine is only installed if the user
desires to utilize single dimension array capability.
This and associated array routines, if installed, will
be in a separate area in memory apart from the
standard SCELBAL routines.

Load L with address of TEMP COUNTER

** Load H with page of counter

Fetch the counter value

Increment the value

Restore the value to memory

Initialize register C to a value of two for future ops
Load L with address of start of ARRAY VARIABLES
** TABLE (less four). Set H to page of the table.
Calculate address of start of next name in table.

** Load D with page of the SYMBOL BUFFER

Set E to starting address of the SYMBOL BUFFER
Compare name in ARRAY VARTABLES table to the
Contents of the SYMBOL BUFFER. If match, go set up
Array token value. Else, reset L to address of TEMP
COUNTER. Set H to page of TEMP COUNTER.
Fetch the counter value into the accumulator.

Change L to number of arrays storage location.
Compare number of entries checked against number
Possible. Keep searching table if not finished.

If finished and no match than have F/A error condx.

Load L with address of TEMP COUNTER

** Load H with page of counter.

Clear the accumulator. Subtract the value in the TEMP
COUNTER from zero to obtain two’s complement.
Place this back in counter location as ARRAY TOKEN
VALUE (negative). Go place the value on F/A STACK.

The routines just presented take care of
determining what type of purpose a paren-
thesis is being used for when the left hand
parenthesis sign is encountered in an expres-
sion. There is, of course, still more to do!

The information enclosed in a set of paren-
thesis will either be argument portion of a
function, the subscript of an array variable,
or the terms that make up a mathematical
expression when the parenthesis is used

for grouping purposes. The latter case is taken
care of between the EVAL and PARSER
routines previously described as they simply
proceed to evaluate all the terms enclosed by
the current parenthesis before proceeding
any further with the process of scanning the
expression. Handling the cases involving
functions or array variables is initiated when
the EVAL routine detects a right hand (*)”)
parenthesis sign and calls on the subroutine
to be described next labeled PRIGHT.

PRIGHT, LLI230

The flow chart on the following page il-
lustrates the key tasks of the PRIGHT sub-
routine and a supporting (optional) sub-
routine labeled PRIGH1. The routine por-
tion starting with the label PRIGH1 is only
used if array capability is implemented in a
version of SCELBAL.

The source for these routines

start here:

listings

Load L with address of F/A STACK pointer

LHI 026
LAM

ADL

LLA

LAM

LMI 000
LLI 203
LHI 027
LMA

NDA

RTZ

JTS PRIGH1
CPI001
JTZ INTX
CPI1 002
JTZ SGNX
CPI 003
JTZ ABSX
CPI 004
JTZ SQRX
CPI 005
JTZ TABX
CPI 006
JTZ RNDX
CPI 007
JTZ CHRX
CPI 010
JTZ UDEFX
HLT

** Load H with page of F/A STACK pointer

Fetch the pointer value into the ACC

Form pointer to top of the F/A STACK

Set L to point to top of the F/A STACK

Fetch the contents of the top of the F/A STACK into
The ACC then clear the top of the F/A STACK

Load L with address of F/A STACK TEMP storage

** Location. Set H to page of F/A STACK TEMP
Store value from top of F/A STACK into temp loc.
Test to see if token value in top of stack was zero

If so, just had simple grouping parenthesis!

@@ If token value minus, indicates array subscript
For positive token value, look for appropriate function
If token value for INTeger function, go do it.

Else, see if token value for SiGN function.

If so, go do it.

Else, see if token value for ABSolute function

If so, go do it.

If not, see if token value for SQuare Root function

If so, go do it.

If not, see if token value for TAB function

If so, go do it.

If not, see if token value for RaNDom function

If so, go find a random number.

If not, see if token value for CHaRacter function

If so, go perform the function.

Else, see if token for user defined machine language
7 Function. If so, perform the User DEfined Function
Safety halt. Program should not reach this location!

The following routine is only installed if the user
desires to utilize single dimension array capability.
This and associated array routines, if installed, will
be in a separate area in memory apart from the
standard SCELBAL routines. (Starts at top of page
following the flow chart.)

9-5

SEE IF TOKEN VALUE AT TOP
OF F/A STACK IS ZERO

YES

SEE IF TOKEN VALUE AT TOP OF

F/A STACK IS GREATER THAN 0

NO YES

1
[SIMPLE GROUPING PARENTHESIS]

1
[HAVE ARRAY SUBSCRIPT]

SEE IF SUBSCRIPT HAS|
NEGATIVE VALUE

NO YES

FUNCTION ROUTINE

EXECUTE APPROPRIA’IT]

CONVERT ARRAY TOKEN VALUE
TO FIND ARRAY NAME IN THE

ARRAY VARIABLES TABLE

FIND STARTING ADDRESS OF
THE ENTRIES FOR THE ARRAY
IN THE ARRAY VALUES TABLE

ERROR

MULTIPLY THE SUBSCRIPT
VALUE TIMES FOUR AND ADD TO
STARTING ADDRESS FOUND IN
ARRAY VARIABLES TABLE TO
OBTAIN THE ADDRESS OF WHERE
DATA IS STORED FOR THE
SPECIFIED ARRAY POINT

LOAD THE DATA VALUE FROM
THE ARRAY VALUES TABLE
INTO THE “FPACC”

PRIGH1,

OUTRNG,

LLI126
LHI 001
LAM

NDA
JTSOUTRNG
CAL FPFIX
LLI124
LAM

SUI 001
RLC

RLC

LCA

LLI 203
LHI 027
LAM

XRI 377
RLC

RLC

ADI 120
LHI 027
LLA

INL

INL

LAM

ADC

LLA

LHI 057
JMP FLOAD

LAI 317
LCI 322
JMP ERROR

Load L with address of the MSW in the FPACC

** Set H to page of FPACC

Fetch MSW of FPACC into the ACC.

Test to see if value in FPACC is positive.

If not, go display error message.

If O.K. then convert floating point to fixed point

Load L with address of LSW of converted value

Fetch the LSW of the value into the ACC

Subtract one from the value to establish proper

Origin for future ops. Now rotate the value twice

To effectively multiply by four. Save the

Calculated result in CPU register C

Load L with address of F/A STACK TEMP

** Load H with page of F/A STACK TEMP

Fetch the value into the accumulator

Complement the value

Rotate the value twice to multiply by four (the number
Of bytes per entry in the ARRAY VARIABLES table).
Add the starting address of the ARRAY VARIABLES
** TABLE to form pointer. Set page address in H.
Point to the name in the ARRAY VARIABLES
Increment the pointer value twice to move over the
Name in the table and point to starting address for the
Array values in the ARRAY VALUES table. Fetch this
Address to the ACC. Now add in the figure calculated
To reach desired subscripted data storage location. Set
1 The pointer to that location. Load the floating point
Value stored there into the FPACC and exit to caller.

Load the ASCII code for letter O into the accumulator
Load the ASCII code for letter R into register C
Go display Out of Range (OR) error message.

The reader has just observed how the
PRIGHT subroutine is used to direct the pro-
gram to a specific routine if a right paren-
thesis indicates that a FUNCTION is to be
executed.

The capabilities of the various FUNCTION
routines were described briefly in an early
chapter. Their use will be described in more
detail in a later use. The actual implemen-
tation of these FUNCTION subroutines
are quite straightforward for the most part
and their operation can be easily followed
by studying the commented source listings
that follow.

There is one special FUNCTION to which
a name has been assigned in the FUNCTION
LOOK-UP TABLE but which will not be
presented. The name given this function
(which the user may readily alter) is UDF
for User Defined Function. The reason the
routine is not presented is because the
routine is precisely what it has been named.
The user is free to create whatever type of
machine language subroutine the user might
desire to have available in the higher level
language. (How about special I/O handling
capability or a frequently used mathematical
function?) This user created routine may be
installed wherever there is available memory
in the user’s system. (Small routines may be

placed at the end of page 31 in the assem-
bled version provided in this manual.) The
user should make sure the address to the start
of the user defined subroutine is substituted
for the dummy address provided for the jump
instruction to the label UDEFX shown in the

INTX, LLI126

listing. The user defined function routine
should conclude with a RET instruction.
Typical techniques that might be used in
such a user created routine might be gleaned
from studying the listings for the function
routines that are provided as presented below.

Load L with address of MSW of the FPACC

INT1,

INT2,

ABSX,

LHI 001

LAM

NDA

JFS INT1
LLIO014

CAL FSTORE
CAL FPFIX
LLI123

LMI 000

CAL FPFLT
LLIOo14

CAL OPLOAD
CAL FPSUB
LLI126

LAM

NDA

JTZ INT2
LLIO14

CAL FLOAD
LLI 024

CAL FACXOP
CAL FPADD

CAL FPFIX
LLI123
LMI 000
JMP FPFLT

LLIO14
JMP FLOAD

LLI126

LHI 001
LAM

NDA

JTS FPCOMP
RET

** Load H with the page of the FPACC

Fetch the MSW of the FPACC into the accumulator
Test the sign of the number in the FPACC. If
Positive jump ahead to integerize

If negative, load L with address of FP TEMP registers
Store the value in the FPACC in FP TEMP

Convert the value in FPACC from floating point to
Fixed point. Load L with address of FPACC
Extension register and clear it.

Convert fixed binary back to FP to integerize

Load L with address of FP TEMP registers

Load the value in FP TEMP into FPOP

Subtract integerized value from original

Set L to address of MSW of FPACC

Fetch the MSW of the FPACC into the accumulator
See if original value and integerized value the same
If so, have integer value in FP TEMP

Else, load L with address of FP TEMP registers
Restore FPACC to original (non-integerized) value
Set L to register containing small value

Set up to add small value to original value in FPACC
Perform the addition

Convert the number in FPACC from floating point

To fixed point. Load L with address of FPACC
Extension register and clear it. Now convert the number
Back to floating point to integerize it and exit to caller.

Load L with address of FP TEMP registers. Transfer
Number from FP TEMP (orig) to FPACC and return.

Load L with address of MSW of the FPACC

** Set H to page of the FPACC

Fetch the MSW of the FPACC into the accumulator
Test the sign of the number to see if it is positive.

If negative, complement the number before returning.
Else, just return with absolute value in the FPACC.

SGNX,

CHRX,

TABX,
TABI1,

TABC,

TABLOP,

BACKSP,

LLI126
LHI 001
LAM

NDA

RTZ

JFS FPONE
LLIO24
JMP FLOAD

CAL FPFIX
LLI124
LAM

CAL ECHO
LLI177
LHI 026
LMI 377
RET

CAL FPFIX
LLI124
LAM

LLI 043
SUM
LLI177

LHI 026
LMI 377

JTS BACKSP
RTZ

LCA
LAI 240

CAL ECHO
DCC

JFZ TABLOP
RET

LAI 215
CAL ECHO
CAL ECHO
LLI043
LHI 001
LMI 001
LLI124
LAM

NDA

RTS

RTZ

JMP TAB1

Load L with address of MSW of the FPACC

** Load H with the page of the FPACC

Fetch the MSW of the FPACC into the accumulator
Test to see if the FPACC is zero

Return to caller if FPACC is zero

If FPACC is positive, load +1.0 into FPACC and exit
If FPACC is negative, set up to load -1.0 into the
FPACC and exit to caller

Convert contents of FPACC from floating point to
Fixed point. Load L with address of LSW of fixed
Value. Fetch this byte into the accumulator.
Display the value.

Set L to address of the TAB FLAG

** Set H to page of the TAB FLAG

Set TAB FLAG (to inhibit display of FP value)
Exit to caller.

Convert contents of FPACC from floating point to
Fixed point. Load L with address of LSW of fixed
Value. Fetch this byte into the accumulator.

Load L with address of COLUMN COUNTER
Subtract value in COLUMN COUNTER from desired
TAB position. Load L with address of the TAB FLAG.
** Set H to page of the TAB FLAG.

Set TAB FLAG (to inhibit display of FP value)

If beyond TAB point desired, simulate back spacing
Return to caller if at desired TAB location

Else, put difference count in register C
Place ASCII code for space in ACC

Display space on output device

Decrement displacement counter

If have not reached TAB position, continue to space
Else, return to calling routine.

Load ASCII code for carriage-return into the ACC
Display the carriage-return

Repeat to provide extra time if TTY

Load L with address of COLUMN COUNTER

** Set H to page of COLUMN COUNTER

Set COLUMN COUNTER to first column

Set L to address containing desired TAB position
Fetch the desired TAB position value

Test to see if it is

Negative or zero

In which case return to caller

Else, proceed to perform the TAB operation.

SQRX,

NEGEXP,

NOREMD,

SQREXP,

SQRLOP,

LLIO14

LHI 001

CAL FSTORE
LLI126

LAM

NDA

JTS SQRERR
JTZ CFALSE
LLIO17

LAM

NDA

JTS NEGEXP
RAR

LBA

LAT 000
RAL

LMA

JMP SQREXP

LBA
XRA
SUB
NDA
RAR
LBA
LAI 000
ACA
LMA
JTZ NOREMD
INB

XRA
SUB
LBA

LLIO013

LMB

LLI 004

LEI 034

LDH

LBI 004

CAL MOVEIT
CAL CFALSE
LLI 044

CAL FSTORE

LLI034

CAL FLOAD
LLIO14

CAL OPLOAD
CAL FPDIV

Load L with address of FP TEMP registers

** Set H to page of FP TEMP. Move contents of FPACC
[Argument of SQR(X)] into FP TEMP for storage.
Load L with MSW of FPACC

Fetch the MSW into the accumulator

Check the sign of the number in the FPACC

If number negative, cannot take square root

If number is zero, return with zero value in FPACC
Load L with address of FP TEMP Exponent register
Fetch the Exponent value into the ACC

Check sign of the Exponent

If Exponent less than zero, process negative Exponent
If Exponent positive, rotate right to divide by two
And save the result in CPU register B

Clear the accumulator without disturbing Carry bit
Rotate Carry bit into the ACC to save remainder
Store the remainder back in FP TEMP Exponent reg.
Jump to continue processing

For negative Exponent, form two’s complement by
Placing the positive value in CPU register B, clearing
The accumulator, and then subtracting B from the ACC
Clear the Carry bit after the complementing operation
Rotate the value right to divide by two

Save the result in CPU register B

Clear the accumulator without disturbing Carry bit
Add Carry bit to the accumulator as remainder

Store the remainder back in FP TEMP Exponent reg

If remainder was zero skip ahead. If not, increment the
Result of the divide by two ops to compen for negative

Clear the accumulator
Subtract the quotient of the divide by two op to
Form two’s complement and save the result in register B

Load L with address of TEMP register

Store Exponent quotient from above ops in TEMP
Load L with address of FP registers containing +1.0
Load E with address of SQR APPROX working registers
Set D to same page as H

Set up register B as a number of bytes to move counter
Transfer value +1.0 into SQR APPROX registers

Now clear the FPACC registers

Load L with address of LAST SQR APPROX temp regs.
Initialize the LAST SQR APPROX regs to value of zero

Load L with address of SQR APPROX working registers
Transfer SQR APPROX into the FPACC

Load L with address of SQR ARG storage registers
Transfer SQR ARG into the FPOP

Divde SQR ARG by SQR APPROX (Form X/A)

9-10

SQRCNV,

SQRERR,

RNDX,

LL1I034

CAL OPLOAD
CAL FPADD
LLI 127

LBM

DCB

LMB

LLI 034

CAL FSTORE
LLI 044

CAL OPLOAD
CAL FPSUB
LLI127

LAM

CPI 367

JTS SQRCNV
LLI 034

LDH

LEI 044

LBI 004

CAL MOVEIT
JMP SQRLOP

LLIO13
LAM

LLI 037
ADM

LMA

LLI 034
JMP FLOAD

LAI 323
LCI 321
JMP ERROR

LLI 064

LHI 001

CAL FLOAD
LLI 050

CAL OPLOAD
CAL FPMULT
LLI 060

CAL OPLOAD
CAL FPADD
LLI 064

CAL FSTORE
LLI127

LAM

SUI 020

LMA

Load L with address of SQR APPROX registers
Transfer SQR APPROX into the FPOP

Add to form value (X/A + A)

Load L with address of FPACC Exponent register
Fetch Exponent value into CPU register B
Subtract one to effectively divide FPACC by two
Restore to memory. (Now have ((X/A + A)/2)
Load L with address of SQR APPROX registers
Store contents of FPACC as new SQR APPROX
Load L with address of LAST SQR APPROX registers
Transfer LAST SQR APPROX into the FPOP
Subtract (LAST SQR APPROX - SQR APPROX)
Load L with address of FPACC Exponent

Fetch the Exponent into the accumulator

See if difference less than 2 to the minus ninth

If so, approximation has converged

Else, load L with address of SQR APPROX

Set D to same page as H

And E with address of LAST SQR APPROX

Set up register B as a number of bytes to move counter
Transfer SQR APPROX into LAST SQR APPROX
Continue ops until approximation converges

Load L with address of TEMP register. Fetch the
Exponenent quotient store there into accumulator.
Change L to point to SQR APPROX exponent.

Add SQR APPROX exponent to quotient value.
Store sum back in SQR APPROX Exponent register.
Load L with address of SQR APPROX. Transfer the
SQR APPROX into FPACC as answer and exit.

Load ASCII code for letter S into the accumulator.
Load ASCII code for letter Q into CPU register C.
Display the SQuare root (SQ) error message.

Load L with address of SEED storage registers

** Set H to page for floating point working registers
Transfer SEED into the FPACC

Load L with address of random constant A

Transfer random constant A into the FPOP
Multiply to form (SEED * A)

Load L with address of random constant C

Transfer random constant C into the FPOP

Add to form (SEED * A) + C

Load L with address of SEED storage registers

Store [(SEED * A) + C] in former SEED registers
Load L with address of FPACC Exponent register
Fetch Exponent value into the accumulator
Subtract 16 (decimal) to effectively divide by 65,536
Now FPACC = [((SEED * A) + C)/65,536]

9-11

CAL FPFIX
LLI123

LMI 000
LLI127

LMI 000

CAL FPFLT
LLI127

LAM

ADI 020
LMA

LLI 064

CAL OPLOAD
CAL FPSUB
LLI 064

CAL FSTORE
LLI127

LAM

SUI 020

LMA

RET

Convert floating to fixed point to obtain integer part
Load L with address of FPACC Extension register
Clear the FPACC Extension register

Load L with address of FPACC Exponent

Clear the FPACC Exponent register

Fetch INT(((SEED * A) + C)/65,536) into the FPACC
Load L with address of FPACC Exponent

Fetch FPACC Exponent into the accumulator

Add 16 (decimal) to effectively multiply by 65,536
(65,536 * INT[((SEED * A) + C)/65,636]) in FPACC
Load L with address of [(SEED * A) + C]

Transfer it into FPOP. Subtract FPACC to form
[(SEED * A) + C] MOD 65,536

Load L with address of former SEED registers

Store SEED MOD 65,536 in place of [(SEED * A) + C]
Load L with address of FPACC Exponent

Fetch FPACC Exponent into the ACC and subtract

16 (decimal) to form (SEED MOD 65,536)/65,536

So that random number in FPACC is between

0.0 and +1.0 and exit to calling routine

The final routine to be discussed in this
chapter is labeled ARRAY. It is part of the
optional group of routines that are included
if SCELBAL is to be implemented with
single dimension array handling capability.
This routine is actually a special extension
of the LET statement routine. It is used to
locate the address in the ARRAY VALUES
TABLE at which a value assigned to an ele-
ment of an array is to be stored.

The key portions of the ARRAY routine
are illustrated in the flow chart on the fol-
lowing page. The reader may wish to refer
to the description of the optional DIMension
statement routine in an earlier chapter. A
discussion of the organization of the ARRAY
VARIABLES and ARRAY VALUES tables
is presented there which will be helpful
in following the operation of the following
routine.

ARRAY,

ARRAY1,

ARRAY2,

ARRAY3,

CAL RESTSY
JMP ARRAY2

LLI 202
JMP ARRAY3

LLI 203

LHI 026
LBM
INB

LLI 276
LMB
LLI 206
LMB

Transfer contents of AUX SYMBOL BUFFER into the
SYMBOL BUFFER. (Entry when have actual LET)

Load L with address of SCAN pointer
Proceed to process. (Entry point for IMPLIED LET)

Load L with address of LET pointer

** Set H to pointer page

Fetch pointer to location where “(” found in statement
Line. Increment it to point to next character in the line.
Load L with address of EVAL pointer and load it with
The starting address for the EVAL routine

Change L to address of ARRAY SETUP pointer

And also store address in that location

9-12

ARRAY]

SEE IF SUBSCRIPT VALUE
PRESENT IN STATEMENT

NO YES
ERROR,; ?

SET UP POINTERS FOR
EVAL SUBROUTINE

LOOK FOR ARRAY NAME
IN ARRAY VARIABLES TABLE

NOﬁND
ERROR| £

< NAME
?

YES

EVALUATE SUBSCRIPT TO
OBTAIN ELEMENT NUMBER

FORM ADDRESS TO STORAGE
LOCATION FOR THE ELEMENT
IN THE ARRAY VALUES TABLE]

SAVE THE ELEMENT STORAGE
ADDRESS FOR LATER USE
BY THE STOSYM SUBROUTINE

EXIT

ARRAY4,

ARRAYS5,

ARRAY6,

ARRAYT,

LLI 206

CAL GETCHR
CPI 251

JTZ ARRAYS
LLI 206

CAL LOOP
JFZ ARRAY4
LAI 301

LCI 306

JMP ERROR

LLI 206
LBM
DCB
LLI 277
LMB
LLI 207
LMI 000

LLI 207

LHI 026

LBM

INB

LMB

LCI 002
LLI114

LHI 027

CAL TABADR
LEI'120

LDI 026

CAL STRCP
JTZ ARRAY7
LLI 207

LHI 026

LAM

LLIO75

LHI 027

CPM

JFZ ARRAY6
JMP FAERR

CAL EVAL
CAL FPFIX
LLI 207

LHI 026

LBM

LCI002
LLI114

LHI 027

CAL TABADR
INL

Load L with address of ARRAY SETUP pointer
Fetch character pointed to by ARRAY SETUP pntr
See if character is “)”’ ? If so, then have located

End of the subscript. If not, reset

L to the ARRAY SETUP pointer. Increment the
Pointer and test for the end of the statement line.

If not end of line, continue looking for right paren.
If reach end of line before right parenthesis than load
ASCII code for letters A and F and display message
Indicating Array Format (AF) error condition

Load L with address of ARRAY SETUP pointer

Fetch pointer (pointing to ¢)’’sign}) into register B
Decrement it to move back to end of subscript number
Load L with address of EVAL FINISH pointer location
Place the pointer value in the EVAL FINISH pointer
Load L with address of LOOP COUNTER

Initialize LOOP COUNTER to value of zero

Load L with address of LOOP COUNTER

** Load H with page of LOOP COUNTER

Fetch the counter value

Increment it

Restore the counter value to memory

Set up counter in register C for future ops

Load L with address of start of ARRAY VARIABLES
** Table (less four). Set H to page of the table.
Calculate the address of next entry in the table

Load register E with starting address of SYMBOL BUFF
** Set D to page of SYMBOL BUFFER

Compare entry in table against contents of SYMBOL BF
If match, have found array name in the table.

Flse, set L to address of the LOOP COUNTER

% Set H to page of the LOOP COUNTER

Fetch the counter value to the ACC

Change L to the counter containing number of arrays
** Set H to the proper page

Compare number of arrays to count in LOOP CNTR

If more entries in the table, continue looking for match
If no matching name in table then have an error condx.

Call subroutine to evaluate subscript expression
Convert the subscript value obtained to fixed format
Load L with address of LOOP COUNTER

** Set H to page of the LOOP COUNTER

Fetch the value in the LOOP COUNTER into the ACC
Set up counter in register C for future ops

Load L with address of ARRAY VARIABLES

** Table (less four). Set H to page of the table.
Calculate the address of entry in the table

Advance the ARRAY VARIABLES table pointer twice

9-14

INL
LCM
LLI124
LHI 001
LAM
SUT 001
RLC
RLC
ADC
LLI 204
LHI 027
LMA
LLI 201
LMI 377
RET

To advance pointer over array name.

Fetch array base address in ARRAY VALUES table
Load L with address of subscript value

** Set H to page of subscript value

Fetch the subscript value into the accumulator
Subtract one from subscript value to allow for zero
Origin. Now multiply by four

Using rotates (number of bytes required for each entry
In the ARRAY VALUES table). Add in base address to
The calculated value to form final address in the

% ARRAY VALUES table. Now set H & L to TEMP
ARRAY ELEMENT storage location & store the addr.
Change L to point to ARRAY FLAG

Set the ARRAY FLAG for future use

Exit to calling routine

9-156

MATHEMATICAL ROUTINES

Essentially all mathematical operations in
SCELBAL are performed by a group of sub-
routines utilizing triple-precision binary
floating point techniques. That is, the man-
tissa portion of a binary number is stored in
three consecutive memory registers in order
to provide 23 bits of magnitude plus a sign
bit in which to represent the magnitude of
the significant digits of a number. In order to
allow for the raising of numbers to a power,
a fourth byte is used to maintain the expo-

...EXPONENT...

SEEEEEEE SMMMMMMM

MEM LOC N+3 MEM LOC N+2

Twenty-three binary bits can represent
decimal numbers from 0.0 to 8,388,847. This
is thus the largest value that the mantissa por-
tion may represent in SCELBAL. (While the
floating point routines can manipulate num-
bers up to this size, the input routine for
SCELBAL limits the maximum decimal num-
ber that may be inputted to about half this
value. As a general rule, the operator should
restrict decimal inputs to six significant digits
for the mantissa portion of a number.)

The seven bits available for the expo-
nent portion of a number in the floating
point routines allow a decimal number to
be raised to approximately the 38'th
power of ten. (While the reader at first
glance might think that seven bits would
provide for an exponent range to 127
decimal, such is not the case. This is be-
cause raising a number by a power of ten
decimal requires raising a binary number
by between the third and fourth power
when using the base 2 (remember, two to
the third power is 8, which is less than 10).

MMMMMMMM

MEM LOC N+1

10-1

nent of a number. That is, the power to which
the mantissa is to be raised. The exponent
portion of a number may thus have a magni-
tude of 7 bits. The eighth bit available in a
register is used to maintain the sign of the
exponent. Thus, each number stored in float-
ing point format in SCELBAL requires four
consecutive bytes in memory for storage.
One byte for the exponent and three bytes
for the significant digits or mantissa. The
format is illustrated in the following diagram.

MMMMMMM M

MEM LOC N

Thus, instead of 7 bits allowing for an ex-
ponent of up to 127 decimal, it can only
represent about one third that amount.

The reader should note that if numbers
being manipulated by SCELBAL should
exceed the absolute magnitudes indicated
above that the results of such calculations
will be in error. This is because the binary
exponent register would change sign on an
overflow/underflow condition. This type
of error is most likely to occur if a user
should raise a large number to a relatively
higher power, or multiply two large num-
bers such as 100E+22 times 50E+24. The
range of powers (plus or minus 38 decimal)
that SCELBAL can handle is quite adequate
for most applications. Extending this range
would require increasing the number of
registers (precision) used to hold numbers
and would significantlv decrease the overall
operating speed of the language. The triple-
precision plus exponent format was chosen
as a suitable compromise between other on-
tions.

Various portions of the floating point
package to be described in this chapter are
called upon by many of the routines des-
cribed previously. Most of the mathematical
operations are performed between two
floating point multiple-byte registers named
the FLOATING POINT ACCUMULATOR
(abbreviated FPACC) and FLOATING POINT
OPERAND (abbreviated FPOP).

The first section of the floating point sec-
tion of SCELBAL consists of a group of sub-
routines that may be called upon separately
to perform the following operations.

FLOATING POINT FIX (FPFIX). This
subroutine will convert a number stored in
floating point format back to binary fixed
point format provided that the floating point
number is in a range that can be converted to
fixed point. (That is, will not require more
than 23 decimal bits for storage.) Thus a num-
ber such as 5 decimal, which would appear in
binary floating point format as:

0.101 E+11

would be converted to the fixed binary for-
mat:

101

The reader may note that converting floating
point to fixed point is merely a matter of
rotating the floating point value to the left
until the binary exponent has a value of zero.
Thus the above floating point number:

0.101 E+11
would be rotated to the left three places.
A floating point number such as:
0.101 E+10000
could not be properly positioned as a fixed
point binary number in a triple-precision regi-
ster (8 bits per register) format because it

would have to be rotated to the left 32 deci-
mal positions.

FLOATING POINT ZERO (FPZERO).
subroutine simply sets the FPACC to a value
of zero. It is used to initialize or clear out the
floating point accumulator.

FLOATING POINT NORMALIZE
(FPNORM). This is the reverse procedure of
for the case when a binary fixed point value
is being changed to floating point notation.
The fixed point value is simply rotated to
the right while the binary exponent value is
incremented until all significant digits are to
the right of an implied decimal point. Thus,
the fixed point value:

101
would be converted to:
0.101 E+11

Normalization is also used after other
floating point operations to standardize the
mantissa to be in the range greater than or
equal to ONE HALF (1/2) but less than ONE.
Thus, if a number such as 0.1 decimal which
would appear as:

0.00011001100... E+0

in binary was normalized it would be shifted
to the left while the binary exponent was
decremented until it appeared as:

0.11001100... E+11

This normalization or standardization process
is valuable primarily because the process aids
in maintaining the maximum number of signi-
ficant digits throughout a series of complex
operations.

FLOATING POINT ADDITION (FPADD).
This subroutine simply adds the floating point
binary number in the FPACC to the floating
point binary number in the FPOP and leaves
the result of the addition in the FPACC.

FLOATING POINT SUBTRACTION
(FPSUB). This subroutine subtracts the value
in the FPACC from the value in the FPOP and

leaves the result in the FPACC.

The source listings for the five floating

FPFIX,

FPFIXL,

FPZERO,

LLI 126

LHI 001
LAM
LLI100
LMA

NDA

CTS FPCOMP
LLI 127

LAI 027
LBM

INB

DCB

JTS FPZERO
SUB

JTS FIXERR
LCA
LLI126

LBI 003

CAL ROTATR
DCC

JFZ FPFIXL
JMP RESIGN

LLI 126
XRA
LMA
DCL
LMA
DCL
LMA
DCL
LMA
RET

point operations just described (FPFIX,
FPZERO, FPNORM, FPADD and FPSUB)
are presented next.

Following subroutine converts number stored as float-
ing point in FPACC to fixed point.

Set L to point to MSW of FPACC

** Set H to point to page of FPACC

Fetch MSW of FPACC

Change pointer to SIGN indicator on same page
Place MSW of FPACC into SIGN indicator

Now test sign bit of MSW of FPACC

Two’s complement value in FPACC if negative
Change pointer to FPACC Exponent register

Set accumulator to 23 (decimal) for number of bits
Load FPACC Exponent into CPU register B

Exercise the value in register B

To set CPU flags

If FPACC Exponent is negative set FPACC to zero
Subtract value of FPACC Exponent from 23 decimal
If Exp larger than 23 decimal cannot convert

Else place result in register C as counter for number
Of rotate ops. Set pointer to MSW of FPACC

Set precision counter (number of bytes in mantissa)
Rotate FPACC right the number of places indicated
By count in register C to effectively rotate all the
Significant bits to the left of the floating point decimal
Point. Go check original sign & negate answer if req’d.

Following subroutine clears the FPACC to the zero
condition.

Set L to point to MSW of FPACC

Clear the accumulator

Set the MSW of FPACC to zero

Decrement the pointer

Set the next significant word of FPACC to zero
Decrement the pointer

Set the LSW of FPACC to zero

Decrement the pointer

Set the auxiliary FPACC byte to zero

Exit to calling routine

The next instruction is a special entry point to the
FPNORM subroutine that is used when a number is
converted from fixed to floating point. The FPNORM
label is the entry point when a number already in float-
ing point format is to be normalized.

10-3

FPFLT,

FPNORM,

NOEXCO,

ACZERT,

LOOKO,

ACNONZ,

ACCSET,

RESIGN,

LBI 027

LAB

LHI 001

LLI 127

NDA

JTZ NOEXCO
LMB

DCL

LAM

LLI 100

LMA

NDA

JFS ACZERT
LBI 004
LLI123

CAL COMPLM

LLI 126
LBI 004
LAM

NDA

JFZ ACNONZ
DCL

DCB

JFZ LOOKO
LLI 127
XRA

LMA

RET

LLI123

LBI 004

CAL ROTATL
LAM

NDA

JTS ACCSET
INL

LBM

DCB

LMB

JMP ACNONZ
LLI 126

LBI 003

CAL ROTATR

LLI 100
LAM
NDA
RFS

For fixed to float set CPU register B to 23 decimal

Get CPU register B into ACC to check for special case
Set H to page of FPACC

Set L to FPACC Exponent byte

Set CPU flags to test what was in CPU register B

If B was zero then do standard normalization

Else set Exponent of FPACC to 23 decimal

Change pointer to MSW of FPACC

Fetch MSW of FPACC into accumulator

Change pointer to SIGN indicator storage location
Place the MSW of FPACC there for future reference
Set CPU flags to test MSW of FPACC

If sign bit not set then jump ahead to do next test

If sign bit set, number in FPACC is negative. Set up
For two’s complement operation

And negate the value in the FPACC to make it positive

Reset pointer to MSW of FPACC

Set precision counter to number of bytes in FPACC
Plus one. Fetch a byte of the FPACC.

Set CPU flags

If find anything then FPACC is not zero

Else decrement pointer to NSW of FPACC

Decrement precision counter

Continue checking to see if FPACC contains anything
Until precision counter is zero. If reach here then
Reset pointer to FPACC Exponent. Clear the ACC and
Clear out the FPACC Exponent. Value of FPACC is zip!
Exit to calling routine

If FPACC has any value set pointer to LSW minus one
Set precision counter to number of bytes in FPACC
Plus one for special cases. Rotate the contents of the
FPACC to the LEFT. Pointer will be set to MSW after
Rotate ops. Fetch MSW and see if have anything in
Most significant bit position. If so, have rotated enough
If not, advance pointer to FPACC Exponent. Fetch
The value of the Exponent and decrement it by one
To compensate for the rotate left of the mantissa
Restore the new value of the Exponent

Continue rotating ops to normalize the FPACC

Set pntr to FPACC MSW. Now must provide room for
Sign bit in normalized FPACC. Set precision counter.
Rotate the FPACC once to the right now.

Set the pointer to SIGN indicator storage location
Fetch the original sign of the FPACC
Set CPU flags

If original sign of FPACC was positive, can exit now.

10-4

FPCOMP,

FPADD,

MOVOP,

NONZAC,

CKEQEX,

SKPNEG,

LL1 124
LBI 003
JMP COMPLM

LLI126

LHI 001

LAM

NDA

JFZ NONZAC

LLI 124

LDH

LEL

LLI134

LBI 004

JMP MOVEIT

LLI 136
LAM
NDA
RTZ

LLI 127
LAM
LLI137
CPM

JTZ SHACOP
LBA

LAM

SBB

JFS SKPNEG
LBA

XRA

SBB

CPI 030

JTS LINEUP
LAM

LLI 127

However, if original sign was negative, must now restore
The FPACC to negative by performing two’s comple-
Ment on FPACC. Return to calling rtn via COMPLM.

Floating point ADDITION. Adds contents of FPACC to
FPOP and leaves result in FPACC. Routine first checks
to see if either register contains zero. If so addition
result is already present!

Set L to point to MSW of FPACC

** Do same for register H

Fetch MSW of FPACC to accumulator

Set CPU flags after loading op

If accumulator non-zero then FPACC has some value

But, if accumulator was zero then normalized FPACC
Must also be zero. Thus answer to addition is simply the
Value in FPOP. Set up pointers to transfer contents of
FPOP to FPACC by pointing to the LSW of both
Registers and perform the transfer. Then exit to calling
Routine with answer in FPACC via MOVEIT.

If FPACC was non-zero then check to see if FPOP has
Some value by obtaining MSW of FPOP

Set CPU flags after loading op. If MSW zero then
Normalized FPOP must be zero. Answer is in FPACC!

If neither FPACC or FPOP was zero then must perform
addition operation. Must first check to see if two num-
bers are within significant range. If not, largest number
is answer. If numbers within range, then must align ex-
ponents before performing the addition of the man-
tissa.

Set pointer to FPACC Exponent storage location.
Fetch the Exponent value to the accumulator.

Change the pointer to the FPOP Exponent

Compare the values of the exponents. If they are the
Same then can immediately proceed to add operations.
If not the same, store FPACC Exponent size in regis B
Fetch the FPOP Exponent size into the ACC

Subtract the FPACC Exponent from the FPOP Exp.

If result is positive jump over the next few instructions
If result was negative, store the result in B

Clear the accumulator

Subtract register B to negate the original value

See if difference is less than 24 decimal.

If so, can align exponents. Go do it.

If not, find out which number is largest. Fetch FPOP
Exponent into ACC. Change pointer to FPACC Exp.

10-5

LINEUP,

MORACC,

SHIFTO,

MOROP,

SHACOP,

SHLOOP,

FSHIFT,

BRING1,

SUM

RTS

LLI 124

JMP MOVOP

LAM

LLI127

SUM

JTS SHIFTO
LCA

LLI 127

CAL SHLOOP
DCC

JFZ MORACC
JMP SHACOP

LCA

LLI 137

CAL SHLOOP
INC

JFZ MOROP

LLI123

LMI 000

LLI 127

CAL SHLOOP
LLI 137

CAL SHLOOP
LDH

LEI 123

LBI 004

CAL ADDER
LBI 000

JMP FPNORM

LBM
INB
LMB
DCL
LBI 004

LAM
NDA
JFS ROTATR

RAL
JMP ROTR

Subtract FPACC from FPOP. If result is negative then
FPACC was larger. Return with answer in FPACC.

If result was positive, larger value in FPOP. Set pointers
To transfer FPOP into FPACC and then exit to caller.

Fetch FPOP Exponent into accumulator.

Change pointer to FPACC Exponent.

Subtract FPACC Exponent from FPOP Exponent. If
Result is negative FPACC is larger. Go shift FPOP.

If result positive FPOP larger, must shift FPACC. Store
Difference count in C. Reset pointer to FPACC Exp
Call the SHift LOOP to rotate FPACC mantissa RIGHT
And INCREMENT Exponent. Decr difference counter
Continue rotate operations until diff counter is zero
Go do final alignment and perform addition process

Routine to shift FPOP. Set difference count into reg. C

Set pointer to FPOP Exponent.

Call the SHift LOOP to rotate FPOP mantissa RIGHT
And INCREMENT Exponent. Then incr difference cntr
Continue rotate operations until diff counter is zero

Set pointer to FPACC LSW minus one to provide extra
Byte for addition ops. Clear that location to zero.
Change pointer to FPACC Exponent

Rotate FPACC mantissa RIGHT & Increment Exponent
Change pointer to FPOP Exponent

Rotate FPOP mantissa RIGHT & Increment Exponent
Rotate ops provide room for overflow. Now set up
Pointers to LSW minus one for both FPACC & FPOP
(FPOP already set after SHLOOP). Set precision counter
Call quad precision ADDITION subroutine.

Set CPU register B to indicate standard normalization
Go normalize the result and exit to caller.

Shifting loop. First fetch Exponent currently being
Pointed to and Increment the value by one.

Return the updated Exponent value to memory.
Decrement the pointer to mantissa portion MSW
Set precision counter

Fetch MSW of mantissa
Set CPU flags after load ops
If MSB not a one can do normal rotate ops

If MSB is a one need to set up carry bit for the negative
Number case. Then make special entry to ROTATR sub

10 -6

MOVEIT,

FSUB,

LAM

INL

CAL SWITCH
LMA

INL

CAL SWITCH
DCB

RTZ

JMP MOVEIT

LLI 124

LHI 001

LBI 003

CAL COMPLM
JMP FPADD

The following subroutine moves the contents of a string
of memory locations from the address pointed to by
CPU registers H & L to the address specified by the con-
tents of registers D & E when the routine is entered. The
process continues until the counter in register B is zero.

Fetch a word from memory string A

Advance A string pointer

Switch pointer to string B

Put word from string A into string B

Advance B string pointer

Switch pointer back to string A

Decrement loop counter

Return to calling routine when counter reaches zero
Else continue transfer operations

The following subroutine SUBTRACTS the contents of
the FLOATING POINT ACCUMULATOR from the
contents of the PLOATING POINT OPERAND and
leaves the result in the FPACC. The routine merely
negates the value in the FPACC and then goes to the
FPADD subroutine just presented.

Set L to address of LSW of FPACC

** Set H to page of FPACC

Set precision counter

Two’s complement the value in the FPACC

Now go add the negated value to perform subtraction!

FLOATING POINT MULTIPLICATION

The next section of the floating point
package is a routine that performs floating
point multiplication. A conventional floating
point multiplication algorithm is utilized to
perform this function. The essence of the
algorithm is illustrated in the flow chart
shown on the next page. Prior to imple-
menting this algorithm the routine performs
several initializing procedures. It checks the
signs of the multiplier and multiplicand and
negates the values if they are negative. If the
signs of the two numbers to be multiplied are

10 -

different, the final answer will be negated.
The exponents of the two numbers are then
added. Finally the two mantissas are multi-
plied using a double width (six byte) partial-
product register. The final answer in this
register is then rounded off to the 23 most
significant binary bits as the final answer. This
answer is left in the FPACC at the conclusion
of the routine (after being negated if the signs
of the original numbers were different). The
listing for the floating point multiplication
subroutine is presented next.

FPMULT,
ADDEXP,

SETMCT,

1
SHIFT MULTIPLIER
RIGHT (INTO CARRY)

YES

|
ADD MULTIPLICAND
TO PARTIAL-PRODUCT
]

SHIFT PARTIAL-
PRODUCT RIGHT

NO

CHECKED YES
ALL BITS IN

MULTIPLIER?

ANSWER IS STORED IN
THE PARTIAL-PRODUCT
REGISTER

The first part of the FLOATING POINT MULTIPLI-
CATION subroutine calls a subroutine to check the
original signs of the numbers that are to be multi-
plied and perform working register clearing functions.
Next the exponents of the numbers to be multiplied
are added together.

CAL CKSIGN Call routine to set up registers & ck signs of numbers

LLI 137 Set pointer to FPOP Exponent

LAM Fetch FPOP Exponent into the accumulator

LLI 127 Change pointer to FPACC Exponent

ADM Add FPACC Exponent to FPOP Exponent

ADI 001 Add one more to total for algorithm compensation
LMA Store result in FPACC Exponent location

LLI102 Change pointer to bit counter storage location
LMI 027 Initialize bit counter to 23 decimal

Next portion of the FPMULT routine is the implemen-
tation of the algorithm illustrated in the flow chart
above. This portion multiplies the values of the two
mantissas. The final value is rounded off to leave the
23 most significant bits as the answer that is stored
back in the FPACC.

10- 8

MULTIP,

EXMLDV,

CKSIGN,

LLI 126

LBI 003

CAL ROTATR
CTC ADOPPP
LLI 146

LBI 006

CAL ROTATR
LLI 102

LCM

DCC

LMC

JFZ MULTIP
LLI 146

LBI 006

CAL ROTATR
LLI143

LAM

RAL

NDA

CTS MROUND
LLI 123

LEL

LDH

LLI 143

LBI 004

CAL MOVEIT
LBI 000

CAL FPNORM
LLI 101

LAM

NDA

RFZ

JMP FPCOMP

LLI 140
LHI 001
LBI 010
XRA

Set pointer to MSW of FPACC mantissa

Set precision counter

Rotate FPACC (multiplier) RIGHT into carry bit

If carry is a one, add multiplicand to partial-product
Set pointer to partial-product most significant byte
Set precision counter (p-p register is double length)
Shift partial-product RIGHT

Set pointer to bit counter storage location

Fetch current value of bit counter

Decrement the value of the bit counter

Restore the updated bit counter to its storage location
If have not multiplied for 23 (decimal) bits, keep going
If have done 23 (decimal) bits, set pntr to p-p MSW
Set precision counter (for double length)

Shift partial-product once more to the RIGHT

Set pointer to access 24’th bit in partial-product
Fetch the byte containing the 24’th bit

Position the 24’th bit to be MSB in the accumulator
Set the CPU flags after to rotate operation and test to
See if 24°th bit of p-p is a ONE. If so, must round-off
Now set up pointers

To perform transfer

Of the multiplication results

From the partial-product location

To the FPACC

Perform the transfer from p-p to FPACC

Set up CPU register B to indicate regular normalization
Normalize the result of multiplication

Now set the pointer to the original SIGNS indicator
Fetch the indicator

Exercise the CPU flags

If indicator is non-zero, answer is positive, can exit here.
If not, answer must be negated, exit via 2’s complement.

The following portions of the FPMULT routine set up
working locations in memory by clearing locations for
an expanded FPOP area and the partial-product storage
area. Next, the signs of the two numbers to be multi-
plied are examined. Negative numbers are negated in
preparation for the multiplication algorithm. A SIGNS
Indicator register is set up during this process to indi-
cate whether the final result of the multiplication
should be positive or negative. (Negative if original signs
of the two numbers to be multiplied are different.)

Set pointer to start of partial-product working area
Set H to proper page

Set up a loop counter in CPU register B

Clear the accumulator

10-9

CLRNEX, LMA Now clear out locations for the partial-product
INL Working registers
DCB Until the loop counter
JFZ CLRNEX Iszero
CLROPL, LBIO0O04 Set a loop counter
LLI 130 Set up pointer
CLRNX1, LMA Clear out some extra registers so that the
INL FPOP may be extended in length
DCB Perform clearing ops until loop counter
JFZ CLRNX1 Is zero
LILI 101 Set pointer to M/D SIGNS indicator storage location
LMI 001 Set initial value of SIGNS indicator to plus one
LLI 126 Change pointer to MSW of FPACC
LAM Fetch MSW of mantissa into accumulator
NDA Test flags
JTS NEGFPA If MSB in MSW of FPACC is a one, number is negative
OPSGNT, LLI136 Set pointer to MSW of FPOP
LAM Fetch MSW of mantissa into accumulator
NDA Test flags
RFS Return to caller if number in FPOP is positive
LLI101 Else change pointer to M/D SIGNS indicator
LCM Fetch the value in the SIGNS indicator
DCC Decrement the value by one
LMC Restore the new value back to storage location
LL1134 Set pointer to LSW of FPOP
LBI 003 Set precision counter
JMP COMPLM Two’s complement value of FPOP & return to caller
NEGFPA, LLI101 Set pointer to M/D SIGNS indicator
LCM Fetch the value in the SIGNS indicator
DCC Decrement the value by one
LMC Restore the new value back to storage location
LLI 124 Set pointer to LSW of FPACC
LBI 003 Set precision counter
CAL COMPLM Two’s complement value of FPACC
JMP OPSGNT Proceed to check sign of FPOP
The following subroutine adds the double length (six
register) multiplicand in FPOP to the partial-product
register when called on by the multiplication algorithm.
ADOPPP, LEI 141 Pointer to LSW of partial-product
LDH On same page as FPOP
LLI131 LSW of FPOP which contains extended multiplicand
LBI 006 Set precision counter (double length working registers)
JMP ADDER Add multiplicand to partial-product & return to caller

10-10

MROUND, LBI 003
LATI 100
ADM
LMA
INL
LAI 000
ACM
DCB
JFZ CROUND
LMA
RET

CROUND,

Propagate

Set up precision counter

Prepare to add one to 24’th bit of partial-product
Add one to the 24’th bit of the partial-product
Restore the updated byte to memory

Advance the memory pointer to next most significant
Byte of partial-product, then clear ACC without
Disturbing carry bit. Now perform add with carry to

any rounding in the partial-product registers.

If counter is not zero continue propagating any carry
Restore final byte to memory
Exit to calling routine

FLOATING POINT DIVISION

The next part of the floating point group
of routines is that which performs floating
point division. A flow chart on the next page
illustrates the conventional algorithm that is
the main portion of this routine.

The division subroutine begins in the same
manner used for floating point multiplica-
tion. Working registers are initialized and
the signs of the two numbers (dividend and
divisor) are tested. Negative numbers are
negated before performing the division.
The final answer is negated if the signs of
the original numbers are different. Prior to
attempting division, a check is made to see

if the divisor is zero. If so, an error message
is displayed to the operator. If not, division
is accomplished by first subtracting the expo-
nent of the divisor from that of the dividend.
The mantissas are then multiplied using the
algorithm illustrated in the flow chart.

At the conclusion of the division process,
a check is made to see if rounding-off is re-
quired. If so, this function is performed. The
final answer is left in the FPACC at the con-
clusion of the routine (after being negated if
the signs of the original numbers were diffe-
rent). The listing for the floating point divi-
sion subroutine is presented next.

The first part of the FLOATING POINT DIVISION sub-

FPDIV, CAL CKSIGN
LLI 126
LAM
NDA
JTZ DVERR
SUBEXP, LLI137
LAM
LLI 127

routine calls a subroutine to check the original signs of
the numbers and perform initialization procedures. Next
a test is made to see if the divisor is zero. An error mes-
sage is displayed in such a case. Next the exponent of
the divisor is subtracted from the dividend exponent.

Call routine to set up registers & ck signs of numbers
Set pointer to MSW of FPACC (divisor)

Fetch MSW of FPACC to accumulator

Exercise CPU flags

If MSW of FPACC is zero go display ‘DZ’ error message

Set pointer to FPOP (dividend) Exponent

Get FPOP Exponent into accumulator
Change pointer to FPACC (divisor) Exponent

10-11

START

SETDCT,

DIVIDE,

SUBTRACT DIVISOR
FROM THE DIVIDEND,

IS\
RESULT

‘0" OR “+77

PLACE ‘1’ IN LSB
| OF QUOTIENT

PLACE ‘0’ IN LSB
OF QUOTIENT

PLACE REMAINDER AS
NEW DIVIDEND
1

N

ROTATE CURRENT
DIVIDEND LEFT

ROTATE QUOTIENT]

TO THE LEFT
FINISHED?

JANSWER IN
QUOTIENT

SUM Subtract divisor exponent from dividend exponent

ADI 001 Add one for algorithm compensation

LMA Place result in FPACC Exponent

LLI 102 Set pointer to bit counter storage location

LMI 027 Initialize bit counter to 23 decimal

Main division algorithm for mantissas

CAL SETSUB Go subtract divisor from dividend

JTS NOGO If result is negative then place a zero bit in quotient
LEI 134 If result zero or positive then move remainder after
LLI131 Subtraction from working area to become new dividend
LBI 003 Set up moving pointers and initialize precision counter
CAL MOVEIT Perform the transfer

LAT 001 Place a one into least significant bit of accumulator
RAR And rotate it out into the carry bit

10 -12

NOGO,

QUOROT,

DVEXIT,

SETSUB,

JMP QUOROT
XRA

LLI 144

LBI 003
CAL ROTL
LLI 134

LBI 003
CAL ROTATL
LLI102
LCM

DCC

LMC

JFZ DIVIDE
CAL SETSUB
JTS DVEXIT
LLI 144
LAM

ADI 001
LMA

LAI 000

INL

ACM

LMA

LAI 000

INL

ACM

LMA

JFS DVEXIT
LBI 003
CAL ROTATR
LLI 127
LBM

INB

LMB

LLI 144
LEI 124
LBI 003
JMP EXMLDV

LEI 131

LDH

LLI 124

LBI 003

CAL MOVEIT

Proceed to rotate the carry bit into the current quotient
When result is negative, put a zero in the carry bit, then:

Set up pointer to LSW of quotient register

Set precision counter

Rotate carry bit into quotient by using special entry to
ROTATL subroutine. Now set up pointer to dividend
LSW and set precision counter

Rotate the current dividend to the left

Set pointer to bit counter storage location

Fetch the value of the bit counter

Decrement the value by one

Restore the new counter value to storage

If bit counter is not zero, continue division process
After 23 (decimal) bits, do subtraction once more for
Possible rounding. Jump ahead if no rounding required.
If rounding required set pointer to LSW of quotient
Fetch LSW of quotient to accumulator

Add one to 23’rd bit of quotient

Restore updated LSW of quotient

Clear accumulator without disturbing carry bit
Advance pointer to next significant byte of quotient
Propagate any carry as part of rounding process
Restore the updated byte of quotient

Clear ACC again without disturbing carry bit
Advance pointer to MSW of quotient

Propagate any carry to finish rounding process
Restore the updated byte of quotient

If most significant bit of quotient is zero, go finish up
If not, set precision counter

And rotate quotient to the right to clear the sign bit
Set pointer to FPACC Exponent

Fetch FPACC exponent

Increment the value to compensate for the rotate right
Restore the updated exponent value

Set up pointers

To transfer the quotient into the FPACC

Set precision counter

And exit through FPMULT routine at EXMLDV

Subroutine to subtract divisor from dividend. Used by
main DIVIDE subroutine.

Set pointer to LSW of working area
On same page as FPACC

Set pointer to LSW of FPACC (divisor)
Set precision counter

Perform transfer

10-13

The following section presents a group of
so-called ‘‘utility” subroutines. These sub-
routines perform a variety of minor functions
required by the floating point package. Many

LEI 131

LLI 134

LBI 003

CAL SUBBER
LAM

NDA

RET

Reset pointer to LSW of working area (now divisor)
Reset pointer to LSW of FPOP (dividend)

Set precision counter

Subtract divisor from dividend

Get MSW of the result of the subtraction operations
Exercise CPU flags

Return to caller with status

FLOATING POINT UTILITY SUBROUTINES

portions of SCELBAL. The specific purpose
of each routine will be explained in the com-
ments portion of the source listing which is
presented below.

of these subroutines are also used by other

ADDER,
ADDMOR,

COMPLM,

MORCOM,

NDA

LAM

CAL SWITCH
ACM

LMA

DCB

RTZ

INL

CAL SWITCH
INL

JMP ADDMOR

LAM
XRI 377
ADI 001
LMA
RAR
LDA
DCB

N’th precision addition subroutine. Length of multi-
byte numbers specified by contents of CPU register
B upon entry. Number starting at location pointed to
by H & L (least significant byte) is added to number
starting at address specified by contents of D & E.

Initialize the carry bit to zero upon entry

Fetch byte from register group A

Switch memory pointer to register group B

Add byte from A to byte from B with carry
Leave result in register group B

Decrement number of bytes (precision) counter
Return to caller when all bytes in group processed
Else advance pointer for register group B

Switch memory pointer back to register group A
Advance the pointer for register group A
Continue the multi-byte addition operation

N’th precision two’s complement (negate) subroutine.
Performs a two’s complement on the multi-byte register
starting at the address pointed to by H & L (least signifi-
cant byte) upon entry.

Fetch the least significant byte of the number to ACC
Exclusive OR to complement the byte

Add one to form two’s complement of byte

Restore the negated byte to memory

Save the carry bit

In CPU register D

Decrement number of bytes (precision) counter

10-14

ROTATL,
ROTL,

ROTATR,
ROTR,

SUBBER,
SUBTRA,

RTZ

INL

LAM

XRI 377

LEA

LAD

RAL

LAT 000

ACE

JMP MORCOM

NDA

LAM

RAL

LMA

DCB

RTZ

INL

JMP ROTL

NDA
LAM
RAR
LMA
DCB
RTZ
DCL
JMP ROTR

NDA
LAM
CAL SWITCH
SBM

‘LMA

DCB
RTZ

Return to caller when all bytes in number processed
Else advance the pointer

Fetch the next byte of the number to ACC
Exclusive OR to complement the byte

Save complemented value in register E temporarily
Restore previous carry status to ACC

And rotate it out to the carry bit

Clear ACC without disturbing carry status

Add in any carry to complemented value

Continue the two’s complement procedure as req’d

N’th precision rotate left subroutine. Rotates a multi-
byte number left starting at the address initially speci-
fied by the contents of CPU registers H & L upon sub-
routine entry (LSW). First entry point will clear the
carry bit before beginning rotate operations. Second
entry point does not clear the carry bit.

Clear the carry bit at this entry point

Fetch a byte from memory

Rotate it left (bring carry into LSB, push MSB to carry)
Restore rotated word to memory

Decrement precision counter

Exit to caller when finished

Else advance pointer to next byte

Continue rotate left operations

N’th precision rotate right subroutine. Opposite of
above subroutine.

Clear the carry bit at this entry point

Fetch a byte from memory

Rotate it right (carry into MSB, LSB to carry)
Restore rotated word to memory

Decrement precision counter

Exit to caller when finished

Else decrement pointer to next byte
Continue rotate right operations

N’th precision subtraction subroutine. Number starting
at location pointed to by D & E (least significant byte)
is subtracted from number starting at address specified
by contents of H & L.

Initialize the carry bit to zero upon entry

Feth byte from register group A

Switch memory pointer to register group B
Subtract byte from group B from that in group A
Leave result in register group B

Decrement number of bytes (precision) counter
Return to calier when all bytes in group processed

10-15

FLOAD,

FSTORE,

OPLOAD,

SETIT,

FACXOP,

SAVEHL,

INL
CAL SWITCH
INL
JMP SUBTRA

LDI 001
LEI 124
LBI 004
JMP MOVEIT

LEL

LDH

LLI 124
LHI 001
JMP SETIT

LDI 001
LEI 134
LBI 004
JMP MOVEIT

CAL SAVEHL
LLI 124

LHI 001

CAL OPLOAD
CAL RESTHL
JMP FLOAD

LAH
LBL
LLI 200
LHI 001
LMA
INL

Else advance pointer for register group B

Switch memory pointer back to register group A
Advance the pointer for register group A
Continue the multi-byte subtraction operation

The next subroutine will transfer the four byte
register string (generally a number in floating point
format) from the starting address pointed to by CPU
registers H & L when the subroutine is entered to
the FPACC (floating point accumulator registers).

** Set page address of FPACC

Set address of least signficant byte of FPACC

Set precision counter to four bytes (mantissa bytes
Plus Exponent) and exit via the transfer routine

The next several subroutines are used to perform
floating pojnt register loading and transfer operations.

Transfer contents of register L to E

Transfer contents of register H to D

Set L to least significant byte of FPACC mantissa

** Set page to FPACC storage area

Go transfer FPACC contents to area pointed to by D&E

** Set page to FPOP storage area

Set pointer to least significant byte of FPOP

Set precision counter. Transfer from H & L area to
Locations pointed toby D & E

The next subroutine performs a double transfer opera-
tion. It first transfers the contents of the FPACC into

the FPOP. It then transfers new data (as pointed to by
H & L upon entry to the subroutine) into the FPACC.

Save contents of H & L upon entry to subroutine

Set pointer to FPACC LSW

** Set pointer to page of FPACC

Transfer FPACC to FPOP

Recover original subroutine entry values for H & L
Transfer registers pointed to by H & L into the FPACC

Subroutine to save the contents of CPU registers D, E, H
and L in a temporary storage area in memory.

Transfer value in H to ACC

And value in L to B

Now set L to start of temporary storage locations
** And set H to storage area page

Save A (entry value of H) in memory

Advance pointer

10-16

LMB
INL

LMD
INL

LME
LHA
LLB
RET

Save B (entry value of L) in memory
Advance pointer

Save D in memory

Advance pointer

Save E in memory

Restore entry value of H

Restore entry value of L

Exit to calling routine

Subroutine to restore the contents of CPU registers D,
E, H and L from temporary storage in memory.

RESTHL, LLI 200
LHI 001
LAM
INL
LBM
INL
LDM
INL
LEM
LHA
LLB
LAM
RET

Set L to start of temporary storage locations
#% Set H to storage area page
Fetch stored value for H in ACC
Advance pointer

Fetch stored value for L into B
Advance pointer

Fetch stored value for D
Advance pointer

Fetch stored value for E
Restore saved value for H
Restore saved value for L

Leave stored value for E in ACC
Exit to calling routine

Subroutine to exchange the contents of H & L with
D&E.

SWITCH, LCH
LHD
LDC
LCL
LLE
LEC

RET

Transfer register H to C temporarily
Place value of D into H

Now put former H from C into D
Transfer register L to C temporarily
Place value of E into L

Now put former L from C into E
Exit to calling routine

CONVERSION OF FIXED AND FLOATING POINT DECIMAL TO FLOATING POINT BINARY

The next section of the floating point
package is used to convert strings of ASCII
characters representing fixed or floating
point numbers to floating point binary num-
bers.

The ASCII character strings which are to
be inputted to this portion of the floating

10-17

point package will be residing in a buffer,
such as the SYMBOL or TOKEN buffer,
after having been evaluated by other portions
of SCELBAL as representing numbers.

Such numbers may be in the form of fixed
point decimal numbers such as:

1234.56

or floating point decimal numbers such as:
654.321 E-15

The next portion of the floating point pro-
gram effectively inputs these character strings
representing decimal numbers and converts
them to a normalized floating point binary
number for further processing by SCELBAL.

This is accomplished in a two part process.
First the ASCII character string representing
the mantissa portion of a decimal number is
converted to a normalized binary floating
point number. Next, any decimal exponent
associated with the mantissa, as in the case
when a floating point decimal number is be-
ing inputted, is processed. This conversion is
accomplished by raising the binary floating

point representation of the mantissa by a
power of ten for each digit in the decimal ex-
ponent. (This is readily accomplished as will
be observed shortly by calling on the sub-
routine FPMULT presented earlier in this
chapter.) Or, by multiplying the floating
point representation of the mantissa by one
tenth (dividing by ten) for each digit in the
decimal exponent when it represents a minus
power.

The decimal to binary conversion routine
must also examine the signs of the decimal
numbers (mantissas and exponents) and take
appropriate steps to negate the binary repre-
sentations as necessary.

All of these tasks are handled by the next
section of the package as may be observed by
studying the following source listing.

GETINP,

NOTO,

LHI 001
LLI 220
LCM

INC

DCC

JFZ NOTO
LLE

LHD

LCM

INC

CAL INDEXC
LMI 000

LLI 220

LHI 001

LCM

INC

LMC

LLE

LHD

CAL INDEXC

The following subroutine is used to input decimal num-
ber strings (stored as ASCII characters in a buffer) to
the floating point input routine. Each time the sub-
routine is called it fetches one ASCII character from the
buffer location pointed to by the contents of D & E
(upon entry) as augmented by an indexing register.

Set H to page of GETINP character counter

Set L to address of GETINP character counter

Load counter value into CPU register C

Exercise the counter in order

To set CPU flags. If counter is non-zero, then indexing
Register (GETINP counter) is all set so jump ahead.
But, if counter zero, then starting to process a new
Character string. Transfer char string buffer pointer into
H & L and fetch the string’s character count value (cc)
Increment the (cc) by one to take account of (cc) byte
Add contents of regis C to H & L to point to end of the
Character string in buffer and place a zero byte marker

Set L back to address of GETINP counter which is used
** As an indexing value. Set H to correct page.

Fetch the value of GETINP counter into register C
Increment the value in C

Restore the updated value for future use

Bring the base address of the character string buffer into
CPU registers H & L

Add contents of register C to form indexed address of

10 -18

INDEXC,

DINPUT,

CLRNX2,

CLRNX3,

NINPUT,

LAM
NDA
LHI 001
RFZ
LLI 220
LMI 000
RET

LAL
ADC
LLA
RFC
INH

RET

LEL
LDH
LHI 001
LLI 150
XRA
LBI 010

LMA

INL

DCB

JFZ CLRNX2
LLI103

LBI 004

LMA

INL

DCB

JFZ CLRNX3
CAL GETINP
CPI 253

JTZ NINPUT
CPI 255

JFZ NOTPLM
LLI 103
LMA

CAL GETINP

Next character to be fetched as input. Fetch the next
Character. Exercise the CPU flags.

** Restore page pointer to floating point working area
If character is non-zero, not end of string, exit to caller
If zero character, must reset GETINP counter for next
String. Reset pointer and clear GETINP counter to zero
Then exit to calling routine

Following subroutine causes register C to be used as an
indexing register. Value in C is added to address in H
and L to form new address.

Place value from register L into accumulator
Add quantity in register C

Restore updated value back to L

Exit to caller if no carry from addition

But, if have carry then must increment register H
Before returning to calling routine

Main Decimal INPUT subroutine to convert strings of
ASCII characters representing decimal fixed or floating
point numbers to binary floating point numbers.

Save entry value of register L in E. (Pointer to buffer
Containing ASCII character string.) Do same for H to D.
Set H to page of floating point working registers

Set L to start of decimal-to-binary working area

Clear the accumulator

Set up a loop counter

Deposit zero in working area to initialize

Advance the memory pointer

Decrement the loop counter

Clear working area until loop counter is zero

Set pointer to floating point temporary registers and
Indicators working area. Set up a loop counter.

Deposit zero in working area to initialize

Advance the memory pointer

Decrement the loop counter

Clear working area until loop counter is zero

Fetch a character from the ASCII char string buffer
(Typically the SYMBOL/TOKEN buffer). See if it is
Code for + sign. Jump ahead if code for + sign.

See if code for minus (-) sign.

Jump ahead if not code for minus sign. If code for
Minus sign, set pointer to MINUS flag storage location.
Set the MINUS flag to indicate a minus number

Fetch another character from the ASCII char string

10-19

NOTPLM,

PERIOD,

FNDEXP,

EXPINP,

NOEXPS,

CPI 256

JTZ PERIOD
CPI 305

JTZ FNDEXP
CPI 240

JTZ NINPUT
NDA

JTZ ENDINP
CPI 260

JTS NUMERR
CPI 272

JFS NUMERR
LLI 156

LCA

LAI 370
NDM

JFZ NINPUT
LLI 105

LBM

INB

LMB

CAL DECBIN
JMP NINPUT

LBA

LLI106

LAM

NDA

JFZ NUMERR
LLI 105

LMA

INL

LMB

JMP NINPUT

CAL GETINP
CPI 253

JTZ EXPINP
CPI 255

JFZ NOEXPS
LLI 104
LMA

CAL GETINP

NDA

JTZ ENDINP
CPI 260

JTS NUMERR
CP1 272
JFSNUMERR

See if character represents a period (decimal point) in
Input string. Jump ahead if yes.

If not period, see if code for E as in Exponent

Jump ahead if yes.

Else see if code for space.

Ignore space character, go fetch another character.

If none of the above see if zero byte

Indicating end of input char string. If yes, jump ahead.
If not end of string, check to see

If character represents

A valid decimal number (0 to 9)

Display error message if not a valid digit at this point!
For valid digit, set pointer to MSW of temporary
Decimal to binary holding registers. Save character in C.
Form mask for sizing in accumulator. Now see if
Holding register has enough room for the conversion of
Another digit. Ignore the input if no more room.

If have room in register then set pointer to input digit
Counter location. Fetch the present value.

Increment it to account for incoming digit.

Restore updated count to storage location.

Call the DECimal to BINary conversion routine to add
In the new digit in holding registers. Continue inputting.

Save character code in register B

Set pointer to PERIOD indicator storage location
Fetch value in PERIOD indicator

Exercise CPU flags

If already have a period then display error message

If not, change pointer to digit counter storage location
Clear the digit counter back to zero

Advance pointer to PERIOD indicator

Set the PERIOD indicator

Continue processing the input character string

Get next character in Exponent

See if it is code for + sign

Jump ahead if yes.

If not + sign, see if minus sign

If not minus sign then jump ahead

For minus sign, set pointer to EXP SIGN indicator
Set the EXP SIGN indicator for a minus exponent

Fetch the next character in the decimal exponent

Exercise the CPU flags

If character inputted was zero, then end of input string
If not end of string, check to see

If character represents

A valid decimal number (0 to 9)

Display error message if not a valid digit at this point!

10-20

ENDINP,

FININP,

POSEXP,

NDI 017
LBA

LLI 157

LAI 003
CPM

JTS NUMERR
LCM

LAM

NDA

RAL

RAL

ADC

RAL

ADB

LMA

JMP EXPINP

LLI 103

LAM

NDA

JTZ FININP
LLI 154

LBI 003

CAL COMPLM

LLI153
XRA

LMA

LDH

LEI 123

LBI 004
CAL MOVEIT
CAL FPFLT
LLI 104
LAM

NDA

LLI 157

JTZ POSEXP
LAM

XRI 377
ADI 001
LMA

LLI 106
LAM

NDA

JTZ EXPOK
LLI 105
XRA

SUM

Else trim the ASCII code to BCD

And save in register B

Set pointer to input exponent storage location
Set accumulator equal to three

See if any previous digit in exponent greater than three
Display error message if yes

Else save any previous value in register C

And also place any previous value in accumulator
Clear the carry bit with this instruction

Single precision multiply by ten algorithm

Two rotate lefts equals times four

Adding in the digit makes total times five
Rotating left again equals times ten

Now add in digit just inputted

Restore the value to exponent storage location
Go get any additional exponent input

Set pointer to mantissa SIGN indicator

Fetch the SIGN indicator to the accumulator
Exercise the CPU flags

If SIGN indicator is zero, go finish up as nr is positive
But, if indicator is non-zero, number is negative

Set pntr to LSW of storage registers, set precision cntr
Negate the triple-precision number in holding registers

Set pointer to input storage LSW minus one

Clear the accumulator

Clear the LSW minus one location

Set register D to floating point working page

Set E to address of FPACC LSW minus one

Set precision counter

Move number from input register to FPACC

Now convert the binary fixed point to floating point
Set pointer to Exponent SIGN indicator location
Fetch the value of the EXP SIGN indicator

Exercise the CPU flags

Reset pointer to input exponent storage location

If EXP SIGN indicator zero, exponent is positive
Else, exponent is negative so must negate

The value in the input exponent storage location

By performing this two’s complement

Restore the negated value to exponent storage location

Set pointer to PERIOD indicator storage location
Fetch the contents of the PERIOD indicator
Exercise the CPU flags

If PERIOD indicator clear, no decimal point involved
If have a decimal point, set pointer to digit counter
Storage location. Clear the accumulator.

And get a negated value of the digit counter in ACC

10-21

EXPOK,

FPX10,

MINEXP, FPD10,

DECBIN,

LLI 157
ADM

LMA

JTS MINEXP
RTZ

LLI 210

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LCM

DCC

LMC

JFZ FPX10
RET

LLI 214

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LBM

INB

LMB

JFZ FPD10
RET

CAL SAVEHL
LLI 153

LAC

NDI 017

LMA

LEI 150

LLI 154

LDH

LBI 003

CAL MOVEIT

Change pointer to input exponent storage location
Add this value to negated digit counter value
Restore new value to storage location

If new value is minus, skip over next subroutine

If new value is zero, no further processing required

Following subroutine will multiply the floating point
binary number stored in FPACC by ten times the
value stored in the decimal exponent storage location.

Set pointer to registers containing floating point

** Binary representation of 10 (decimal).

Transfer FPACC to FPOP and 10 (dec) to FPACC
Multiply FPOP (formerly FPACC) by 10 (decimal)

Set pointer to decimal exponent storage location

Fetch the exponent value

Decrement

Restore to storage

If exponent value is not zero, continue multiplication
When exponent is zero can exit. Conversion completed.

Following subroutine will multiply the floating point
binary number stored in FPACC by 0.1 times the value
(negative) stored in the decimal exponent storage
location.

Set pointer to registers containing floating point

*% Binary representation of 0.1 (decimal).

Transfer FPACC to FPOP and 0.1 (dec) to FPACC
Multioly FPOP (formerly FPACC) by 0.1 (decimalj

Set pointer to decimal exponent storage location

Fetch the exponent value

Increment

Restore to storage

If exponent value is not zero, continue multiplication
When exponent is zero can exit. Conversion completed.

Following subroutine is used to convert decimal charac-
ters to binary fixed point format in a triple-precision
format.

Save entry value of D, E, H and L in memory

Set pointer to temporary storage location

Restore character inputted to accumulator

Trim ASCII code to BCD

Store temporarily

Set pointer to working area LSW of multi-byte register
Set another pointer to LSW of conversion register
Make sure D set to page of working area

Set precision counter

Move original value of conversion register to working

10 - 22

LLI 154

LBI 003

CAL ROTATL
LLI 154

LBI 003

CAL ROTATL
LEI 154

LLI 150

LBI 003

CAL ADDER
LLI154

LBI 003

CAL ROTATL
LLI 152

XRA

Register. Reset pointer to LSW of conversion register.
Set precision counter

Rotate register left. (Multiplies value by two.)

Reset pointer to LSW.

Set precision counter

Multiply by two again (total now times four).

Set pointer to LSW of conversion register.

Set pointer to LSW of working register (original value).
Set precision counter.

Add original value to rotated value (now times five).
Reset pointer to LSW

Set precision counter

Multiply by two once more (total now times ten).
Set pointer to clear working register locations

Clear the accumulator

LMA

DCL

LMA
LL1153
LAM

LLI 150
LMA

LEI 154
LBI1003
CAL ADDER
JMP RESTHL

Clear MSW of working register

Decrement pointer

Clear next byte

Set pointer to current digit storage location

Fetch the current digit

Change pointer to LSW of working register

Deposit the current digit in LSW of working register
Set pointer to conversion register LSW

Set precision counter

Add current digit to conversion register to complete
Conversion. Exit to caller by restoring CPU registers.

CONVERSION OF FLOATING POINT BINARY TO FIXED AND FLOATING POINT DECIMAL

The final section of the SCELBAL floating
point package performs essentially the reverse
of the portion just presented. It will convert
a number from floating point binary format
into fixed or floating point decimal format
for display on the user’s output device.

Selecting between fixed point and floating
point decimal output is automatically deter-
mined by the conversion routine. If the num-
ber stored in binary floating point format can
be represented in 23 binary bits or less, and
is greater than one, the number will be dis-
played in fixed point format with the deci-
mal point positioned as required. If the num-
ber is not within this range, it will be out-
putted in decimal floating point format as a
mantissa raised to the appropriate decimal
power of ten.

10-23

The routine operates in essentially the
reverse manner of the input routine. First
the floating point binary number is con-
verted to a fixed point binary number (re-
presenting the mantissa digits of its deci-
mal equivalent) and an associated binary
exponent portion representing the powers
of ten to which the decimal mantissa is to
be raised (for numbers requiring an expo-
nent). These binary representations are
then converted and displayed as decimal
digits with the output being the ASCII
code for each digit in the number. The output
routine also takes care of inserting a decimal
point and minus signs if appropriate.

The source listing for this final section
of the floating point package is presented
next.

FPOUT,

OUTNEG,

AHEAD1,

OUTFLT,

OUTFIX,

LHI 001

LLI 157

LMI 000

LLI 126

L:’\l\’[

NDA

JTS OUTNEG
LAT 240

JMP AHEAD1

LLI 124
LBI 003
CAL COMPLM
LAI 255

CAL ECHO
LLI 110
LAM

NDA

JTZ OUTFLT
LLI 127

LAI 027
LBM

INB

DCB

JTS OUTFLT
SUB

JTS OUTFLT
JMP OUTFIX

LLI110
LMI 000
LAI 260
CAL ECHO
LAI 256
CAL ECHO

LLI127
LAT 377
ADM
LMA

The first portion of the FPOUT subroutine performs
initializing operations and then determines whether
the output is to be in fixed or floating point format.

** Set H to working area for floating point routines

Set pointer to decimal exponent storage location
Initialize storage location to zero

Change pointer to FPACC (number to be outputted)
And fetch MSW of FPACC

Test the contents of MSW of FPACC

If most significant bit of MSW is a one, have a minus nr.
Else number is positive, set ASCII code for space for a
Positive number and go display a space

If number in FPACC is negative must negate in order
To display. Set pntr to LSW of FPACC & set prec. cntr.
Negate the number in the FPACC to make it positive
But load ACC with ASCII code for minus sign

Call user display driver to output space or minus sign
Set pointer to FIXED/FLOAT indicator

Fetch value of FIXED/FLOAT indicator

Test contents of indicator. If contents are zero, calling
Routine has directed floating point output format.

If indicator non-zero, fixed point format requested if
Possible. Point to FPACC Exponent. Put 23 decimal in
Accumulator. Fetch FPACC Exponent into register B
And exercise the register to test its

Original contents. If FPACC Exponent is negative in
Value then go to floating point output format. If value
Is positive, subtract value from 23 (decimal). If result
Negative, number is too big to use fixed format.

Else, can use fixed format so skip next routine

Set pointer to FIXED/FLOAT indicator.

Clear indicator to indicate floating point output format
Load ASCII code for ‘0’ into accumulator

Call user display driver to output ‘0’ as first character in
Number string. Now load ASCII code for decimal point.
Call user display driver to output ‘.” as second character.

Set pointer to FPACC Exponent
Load accumulator with minus one
Add value in FPACC Exponent
Restore compensated exponent value

Next portion of routine establishes the value for the

decimal exponent that will be outputted by processing
the binary exponent value in the FPACC.

10 - 24

DECEXT,

DECREP,

DECEXD,

DECOUT,

COMPEN,

JFS DECEXD
LAT 004

ADM

JFS DECOUT
L1i 210

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LCM

bcC

LMC

LLI 127

LAM

NDA

JMP DECEXT

LLI 214

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LBM

INB

LMB

JMP DECREP

LEI 164

LDH

LLI124

LBI 003

CAL MOVEIT
LLI 167

LMI 000

LLI 164

LBI 003

CAL ROTATL
CAL OUTX10

LLI127

LBM

INB

LMB

JTZ OUTDIG

If compensated exponent value is zero or positive
Then go multiply FPACC by 0.1 (decimal). Else,
Add four to the exponent value.

If exponent now zero or positive, ready to output

If exponent negative, multiply FPACC by 10 (decimal)
*% Set pointer to registers holding 10 (dec) in binary
Floating point format. Set up for multiplication.
Perform the multiplication. Answer in FPACC.

Set pointer to decimal exponent storage location.
Each time the FPACC is multiplied by ten, need to
Decrement the value in the decimal exponent storage
Location. (This establishes decimal exponent value!)

Reset pointer to FPACC Exponent
Fetch value in exponent

Test value

Repeat process as required

If exponent is positive, multiplv FPACC by 0.1

*#% Set pointer to registers holding 0.1 (dec) in binary
Floating point format. Set up for multiplication.
Perform the multiplication. Answer in FPACC.

Set pointer to decimal exponent storage location.

Each time the FPACC is multiplied by one tenth, need
To increment the value in the decimal exponent storage
Location. (This establishes decimal exponent value!)
Repeat process as required

The next section outputs the mantissa (or fixed point
number) by converting the value remaining in the
FPACC (after the decimal exponent equivalent has been
extracted from the original value if required by the pre-
vious routines) to a string of decimal digits.

Set pointer to LSW of output working register

Set D to same page value as H

Set pointer to LSW of FPACC

Set precision counter

Move value in FPACC to output working register

Set pointer to MSW plus one of output working register
Clear that location to zero

Set pointer to LSW of output working register

Set precision counter

Rotate register left once to compensate for sign bit
Multiply output register by 10, overflow into MSW+1

Set pointer back to FPACC Exponent

Compensate for any remainder in the binary exponent
By performing a rotate right on the output working
Register until the binary exponent becomes zero

Go output decimal digits when this loop is finished

10 - 25

OUTDIG,

OUTDGS,

OUTZER,

OUTDGX,

DECRDG,

PUSHIT,

CKDECP,

LLI 167
LBI 004
CAL ROTATR
JMP COMPEN

LLI 107

LMI 007

LLI 167

LAM

NDA

JTZ ZERODG

LLI 167

LAM

NDA

JFZ OUTDGX
LLI110

LAM

NDA

JTZ OUTZER
LLI 157

LCM

DCC

INC
JFSOUTZER
LLI 166

LAM

NDI 340

JFZ OUTZER
RET

XRA

ADI 260
CAL ECHO

LLI110
LAM

NDA

JFZ CKDECP
LLI 107

LCM

DCC

LMC

JTZ EXPOUT

CAL OUTX10
JMP OUTDGS

LLI 157
LCM

Binary exponent compensating loop. Set pointer to
Working register MSW+1. Set precision counter.
Rotate working register to the right.

Repeat loop as required.

Set pointer to output digit counter storage location
Initialize to value of seven

Change pointer to output working register MSW+1
Fetch MSW+1 byte containing BCD of digit to be
Displayed. Test the contents of this byte.

If zero jump to ZERODG routine.

Reset pointer to working register MSW+1

Fetch BCD of digit to be outputted

Exercise CPU flags

If not zero, go display the digit

If zero, change pointer to FIXED/FLOAT indicator
Fetch the indicator into the accumulator

Test value of indicator

If in floating point mode, go display the digit

Else change pointer to decimal exponent storage
Location, which, for fixed point, will have a positive

Value for all digits before the decimal point. Decrement
And increment to exercise flags. See if count is positive.

If positive, must display any zero digit.

If not, change pointer to MSW of working register
And test to see if any significant digits coming up

By forming a mask and testing for presence of bits

If more significant digits coming up soon, display the
Zero digit. Else, exit to calling routine. Finished.

Clear the accumulator to restore zero digit value

Add 260 (octal) to BCD code in ACC to form ASCII
Code and call the user’s display driver subroutine

Set pointer to FIXED/FLOAT indicator storage
Fetch the indicator to the accumulator

Exercise the CPU flags

If indicator non-zero, doing fixed point output
Else, get output digit counter

Decrement the digit counter & restore to storage

When digit counter is zero, go take care of exponent

Else push next BCD digit out of working register
And continue the outputting process

For fixed point output, decimal exponent serves as
Counter for number of digits before decimal point

10 - 26

NODECP,

ZERODG,

OUTX10,

DCC

LMC

JFZ NODECP
LAI 256

CAL ECHO

LLI107
LCM

DCC

LMC

RTZ

JMP PUSHIT

LLI 157

LCM

DCC

LMC

LLI 166

LAM

NDA

JFZ DECRDG
DCL

LAM

NDA

JFZ DECRDG
DCL

LAM

NDA

JFZ DECRDG
LLI 157

LMA

JMP DECRDG

LLI 167

LMI 000

LLI 164

LDH

LEI 160

LBI 004

CAL MOVEIT
LLI164

LBI 004

CAL ROTATL
LLI 164

LBI 004

CAL ROTATL
LLI160

Fetch the counter and decrement it to account for
Current digit being processed. Restore to storage.

If count does not go to zero, jump ahead.

When count reaches zero, load ASCII code for period
And call user’s display driver to display decimal point

Set pointer to output digit counter storage location
Fetch the digit counter

Decrement the value

Restore to storage

If counter reaches zero, exit to caller. Finished.
Else continue to output the number.

If first digit of floating point number is a zero, set
Pointer to decimal exponent storage location.
Decrement the value to compensate for skipping
Display of first digit. Restore to storage.

Change pointer to MSW of output working register
Fetch MSW of output working register

Test the contents

If non-zero, continue outputting

Else decrement pointer to next byte in working register
Fetch its contents

Test

If non-zero, continue outputting

Else decrement pointer to LSW of working register
Fetch its contents

Test

If non-zero, continue outputting

If decimal mantissa is zero, set pointer to decimal
Exponent storage and clear it

Finish outputting

Following routine multiplies the binary number in the
output working register by ten to push the most signifi-
cant digit out to the MSW+1 byte.

Set pointer to working register MSW+1

Clear it in preparation for receiving next digit pushed
Into it. Change pointer to working register LSW.

Set up register D to same page as H.

Set second pointer to LSW of second working register
Set precision counter

Move first working register into second

Reset pointer to LSW of first working register

Set precision counter

Rotate contents of first working register left (X 2)
Reset pointer to LSW

Reset precision counter

Rotate contents left again (X 4)

Set pointer to LSW of original value in 2°nd register

10 - 27

EXPOUT,

EXOUTN,

AHEAD2,

SUB12,

TOMUCH,

LEI 164

LBI 004

CAL ADDER
LLI 164

LBI 004

CAL ROTATL
RET

LLI 157

LAM

NDA

RTZ

LAT 305

CAL ECHO
LAM

NDA

JTS EXOUTN
LAI 253

JMP AHEAD2

XRI 377
ADI 001
LMA

LAT 255

CAL ECHO
LBI 000
LAM

SUT 012

JTS TOMUCH
LMA

INB

JMP SUB12

LAI 260
ADB

CAL ECHO
LAM

ADI 260
CAL ECHO
RET

Set pointer to LSW of rotated value

Set precision counter

Add rotated value to original value (X 5)
Reset pointer to LSW of first working register
Set precision counter

Rotate contents left again (X 10)

Exit to calling routine

The final group of routines in the floating point output
section take care of outputting the decimal exponent
portion of floating point numbers.

Set pointer to decimal exponent storage location
Fetch value to the accumulator

Test the value

If zero, then no exponent portion. Exit to caller.
Else, load ACC with ASCII code for letter E.
Display E for Exponent via user’s displav driver rtn
Get decimal exponent value back into ACC

Test again

1f value is negative, skip ahead

If positive, load ASCII code for + sign

Jump to display the + sign

When decimal exponent is negative, must negate

Value for display purposes. Perform two’s complement
And restore the negated value to storage location

Load ASCII code for minus sign

Display the ASCII character in ACC
Clear register B
Fetch the decimal exponent value back into ACC

Subtract 10 (decimal) from value in ACC

Break out of loop when accumulator goes negative
Else restore value to storage location

Increment register B as a counter

Repeat loop to form tens value of decimal exponent

Load base ASCII value for digit into the accumulator
Add to the count in B to form tens digit of decimal
Exponent. Display via user’s driver subroutine

Fetch remainder of decimal exponent value

Add in ASCII base value to form final digit

Display second digit of decimal exponent

Finished outputting. Return to caller.

10 - 28

I/O ROUTINES

Because of the wide variety of I/O devices
that individual system owners may have con-
nected to their computers, SCELBAL was de-
signed so that individual users could provide
their own actual I/O routines. In order to al-
low this, the reader may have noted in the
previous chapters that all references to 1/O
routines are vectored to one of four loca-
tions in the program. Each one of these loca-
tions contains a jump or call instruction that
the user must complete by supplying the
actual address to the user supplied I/O
routine. The four locations referred to are
discussed here.

The location in the program labeled
CINPUT (located at the address 03 221 in
the assembled version of the program pre-
sented in this publication) is the vector in-
struction for the user provided OPERATOR
INPUT DEVICE. This device would typi-
cally be an electronic keyboard or similar
device on which the operator would type
in commands to the SCELBAL executive
and enter statements or programs into the
user program buffer. SCELBAL expects all
inputs to the program itself to be in the form
of ASCII encoded characters with the eighth
bit always marking. A list of the octal codes
for ASCII encoded characters utilized by
the program is shown on the next page. This
routine should also provide a duplicate of the
character received on the system’s output de-
vice so that the user may verify the characters
inputted to the program.

The vector point for sending data from the
program to the system’s display device is loca-
ted in the subroutine labeled ECHO (at ad-
dress 03 213 in the assembled version of the
program). The output device would typi-
cally be an electro-mechanical printing de-
vice or other suitable display mechanism on
which data from the program may be dis-
played. SCELBAL has the ASCII code for the
character to be displayed in the accumu-
lator when this vector point is encountered.
It expects the user provided output driver

11-1

routine to display the character corres-
ponding to the ASCII code on the system’s
display device. Of course, if the user’s dis-
play mechanism uses some other type of
code, it is possible for the user to insert an
appropriate conversion routine in the out-
put routine. (This also applies for inputs.)

There are several extremely important
considerations for the reader to bear in mind
when preparing to implement the actual I/O
driving routines to be used with SCELBAL.
(The following two considerations refer to
I/O operations involving the system device
through which the operator communicates
with the program. They do not apply to the
1/O routines associated with the system’s bulk
storage device which will be discussed further
on in this chapter.)

1. Only CPU register B and the accumu-
lator may be used by the I/O routines. All
the other CPU registers must contain their
original values when I/O operations have been
completed.

2. For the 8008 version of SCELBAL,
the I/O routines themselves may only utilize
a maximum of two levels of nesting! This is
because, when called, the 8008 internal stack
may at times be loaded to the point where
pushing the stack down more than two times
would result in the loss of stack information.

Consideration number one above causes
no real concern for readers who implement
SCELBAL on an 8080 system. The 8080,
which has the CPU’s stack implemented in
RAM memory, can easily save CPU registers
C through L on the stack if required while
performing an I/O operation. The registers
may then be restored from the stack when the
1/O operation is completed.

For 8008 users, the consideration will be
fairly easy for most users to cope with if
their I/O device has a parallel type interface
with the computer such as commonly found

in devices that utilize a UART device. With
such an interface it is generally quite easy to
perform the necessary transfer functions us-
ing just the accumulator and a CPU register.
(Just remember to use register B!)

Users with a serial interface may find the
restriction somewhat challenging, especially
if restriction number two above also applies.
As an aid to those that might find themselves
in such a situation, an example input and out-
put routine designed to operate with a serial
electro-mechanical keyboard and printer, that

CHARACTER BINARY OCTAL
A 11 000 001 301
B 11 000 010 302
C 11 000 011 303
D 11 000 100 304
E 11 000 101 305
F 11 000 110 306
G 11 000 111 307
H 11 001 000 310
I 11 001 001 311
J 11 001 010 312
K 11 001 011 313
L 11 001 100 314
M 11 001 101 315
N 11 001 110 316
o) 11 001 111 317
P 11 010 000 320
Q 11 010 001 321
R 11 010 010 322
S 11 010 011 323
T 11 010 100 324
U 11 010 101 325
Y 11 010 110 326
W 11 010 111 327
X 11 011 000 330
Y 11 011 001 331
Z 11 011 010 332
[11 011 011 333
\ 11 011 100 334
] 11 011 101 335
1 11 011 110 336
- 11 011 111 337

SPACE 11 100 000 240

satisfies both conditions above, will be pro-
vided starting on the next page.

Consideration number two must be strictly
adhered to when SCELBAL is operating in an
8008 system. Naturally, for an 8080 based
unit with its stack residing in RAM memory,
the restriction does not apply provided that
the user allocates sufficient room for the
stack in memory. Recommendations of suit-
able areas in memory that may be reserved
for 8080 stack use are made in the chapter
that contains the object code listing of the
SCELBAL program for the 8080 CPU.

CHARACTER BINARY OCTAL
! 10 100 001 241
»” 10 100 010 242
10 100 011 243
$ 10 100 100 244
% 10 100 101 245

10 100 110 246

10 100 111 247

(10 101 000 250
) 10 101 001 251
* 10 101 010 252
+ 10 101 011 253
, 10 101 100 254
10 101 101 255

. 10 101 110 256
/ 10 101 111 257
0 10 110 000 260
1 10 110 001 261
2 10 110 010 262
3 10 110 011 263
4 10 110 100 264
5 10 110 101 265
6 10 110 110 266
7 10 110 111 267
8 10 111 000 270
9 10 111 001 271
: 10 111 010 272
) 10 111 011 273
< 10 111 100 274
= 10 111 101 275
> 10 111 110 276
? 10 111 111 277
Control ‘C’ 10 000 011 203

TABLE OF ASCII CODES WITH PARITY BIT MARKING AS USED BY SCELBAL

11-

2

RCV,

MOREL,

STOP,

MORES3,

NEXBIT,

INP 47
NDA
JTS RCV
XRA

LBI 104

DCB

JFZ MORE1
OUT %7+
CAL TIMER
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT

LAI 001
OUT 7
LAB
RLC

LBI 314

DCB
JFZ MORE3
RET

INP +7
NDI 200
RLC
OUT %7
RRC
ADB
RRC

Routine to receive serial data from an INPUT device
connected to bit B7 of an input port. Incoming charac-
ters assumed to be in format: 1 start bit, eight data bits
(1 to 8) and 2 stop bits. Timing loops in example shown
for characters coming in at a rate of 10 characters per
second and assuming 8008 CPU clock set at 500 Khz.
Received character will be in the accumuiator when
routine is finished. This routine will automatically echo
the character received to an OUTPUT device connected
to bit BO of an output port. To disable the echo replace
output instructions with NOPs such as LAA. This rout-
ine uses only register B and the accumulator and does
not push the CPU stack down more than two levels as
it operates.

Sample the current input on the serial line from input
Device. Check to see if the line has gone to logic zero
Condition indicating a possible START bit. If not, loop
To look for the start bit. If have start bit, clear the ACC.
Set a counter up in register B to cause time delay equai

To about half a bit. Fall into the first timing loop and
Time it out until counter in B is zero. Now start the
Echo process by sending logic zero to output device.
Call subroutine to provide time delay equal to one bit.
Input the first bit.

Input the second bit.

Input the third bit.

Input the fourth bit.

Input the fifth bit.

Input the sixth bit.

Input the seventh bit.

Input the eighth bit.

Set up stop bit for the output device.

Send a logic one to the output device.

Fetch the character from B to the ACC.

Format character to compensate for RRC by NEXBIT.
Set up a counter in register B to cause time delay equal

To about one and a half bits for STOP bits. Fall into the
Timing loop and time out until counter is zero.
Now return to calling routine with character in ACC.

Input a character to bit B7 from the selected input port.
Mask off bits b6 through BO to leave just bit B7.
Position the bit in B7 to bit BO to prepare to Echo bit.
Output bit BO to the output device.

Restore the bit back to B7.

Add previous bits in character stored in register B.
Rotate all bits to make room for next incoming bit.

11-

[

TIMER,

MORE2,

PRINT,

BITOUT,

LBI 213

DCB
JFZ MORE2
LBA
RET

NDA

RAL

OUT 177
RAR

CAL TIMER
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
LBA

LATI 001

OUT ¥1F
LAB

CAL TIMER
LBI103

JMP MORE3

OUT 7
RRC

CAL TIMER
RET

Set up a counter in register B to cause time delay equal

To about one bit. Fall into the timing loop and
Time out until counter is zero.

Now save the contents of the ACC in register B.
Return to main inputting routine.

Routine to send data in serial format to an OUTPUT
device connected to bit BO of an output port. Character
assumed to have same format and is sent at same rate

as in the example input routine. Routine expects ASCII
encoded character to be in the accumulator when the
routine is entered. This routine uses only register B and
the accumulator and does not push the CPU stack down
more than two levels during its execution.

Clear the carry flag prior to set up for sending START
Bit. Rotate the carry status into bit BO. Now output a
Logic zero level for START bit to output device.
Restore the original ASCII character in the ACC.
Provide one bit delay for sending of the START bit.
Output the first bit.

Output the second bit.

Output the third bit.

Output the fourth bit.

Output the fifth bit.

Output the sixth bit.

Output the seventh bit.

Output the eighth bit.

Save contents of the ACC in register B.

Set bit BO to a logic one for sending STOP bit.

Send a logic one from bit BO to the output device.
Restore the character from register B to the ACC.
Provide time delay for the two STOP bits.

Finish providing time delay for the STOP bits.

Exit from the PRINT routine when finished timing out.

Output status of BO to output device.

Position the next bit in the ACC to bit position BO.
Provide one bit time delay.

Return to main outputting routine.

It is important to reiterate, as illustrated in
the example INPUT subroutine, that the in-
put routine provided by the user for use with
SCELBAL should reflect the character input-
ted on the system’s output device. If this is
not done, the operator will not be able to

11-4

see the information as it is inputted. This may
be done in the manner illustrated in the
example program (where the character is
reflected to the output device on a bit-by-bit
basis as it is received) or it may be accom-
plished by simply having the input subroutine

jump to the output subroutine when a charac-
ter has been completely received. The latter
technique, however, generally slows down the
overall inputting speed to a level that is un-
pleasant for many operators if an electro-
mechanical 1/O device is being used. This is
because the operator must wait an extra frac-
tion of a second for the character to be sent
to the output device.

NOTE: The example I/O routines pre-
sented serve only as guide lines for the special
case mentioned where serial I/O devices are
being utilized with an 8008 equipped com-
puter. The actual values used in timing loops,
and other parameters would vary depending
on the individual system’s I/O arrangements.
Many reader’s will not require such elaborate
1/O subroutines.

The two types of I/O subroutines discussed
to this point are essential to the operation of
SCELBAL as they provide the means for the
operator to communicate with the program.
There are two more types of 1/O routines that
might be considered optional by some users.
These two routines may be created by the
user to provide the capability of saving a
program that has been placed in the user pro-
gram buffer on an external bulk storage de-
vice, and vice versa.

The reader who desires to save user pro-
grams on a bulk storage device should note
that the vector to such a routine is located
in the EXECutive portion of SCELBAL in the
subsection headed by the label NOSCR (at
address 11 104 in the assembled version of
the program). This vector is taken when an
operator specifies the EXECutive command
SAVE.

In order to implement SAVE capability
the user need only provide a routine that
will effectively dump the contents of the user
program buffer and the contents of a pair of
memory words on the system’s bulk storage
device. The pair of words that should be saved
is the pair that holds the pointer to the end
of the user program buffer! In the assembled
version of SCELBAL provided in this manual

11 -

that register pair is located at 26 364 and
26 365.

Thus, for whatever type of bulk storage
device the reader is utilizing, the reader need
simply create a routine that will first write
out the contents of the user program buffer.
(It starts at location 33 000 in the assem-
bled version of SCELBAL provided herein.
It ends at the point indicated by the con-
tents of the “end of user program buffer
pointer.” That point will vary depending on
the particular size of a user’s program.) Then,
the routine should write out the contents of
the “end of user program buffer pointer”
(which was just used to determine how much
of the user program buffer should be written
on the bulk storage device)!

The details of such a routine will be entire-
ly a function of the type of bulk storage
device the system utilizes. However, for most
systems, the creation of such a routine should
be quite easy and consist of a series of calls
to standard driver routines for the particular
device being utilized.

The fourth I/O routine referred to in
SCELBAL is the routine that would read in a
high level program from the bulk storage
device into the user program buffer area and
set the “end of user program buffer pointer”
to the appropriate value. In essence, all this
subroutine does is read back in what the sub-
routine discussed above wrote on the bulk
storage medium, placing it in the appropriate
addresses in memory. (The user program buf-
fer and the two bytes of the pointer.)

Reference to this routine is made in the
subsection of the EXECutive part of the
program labeled NOSCR (at address 11 122
in the assembled version of the program).
This routine would be executed when the
user issued the LOAD directive.

The two user provided routines for hand-
ling the bulk storage device are free to use all
of the CPU registers. Additionally, the devel-
oper of these routines need only ensure that
the use of the CPU stack (by subroutine nest-

ing operations) is kept within the capabilities
of the 8008, or, in the case of the 8080, with-
in the boundaries of the memory area reser-
ved for the CPU stack.

Both of the routines associated with the
bulk storage device operations should end by
directing program operation back to the start
of the EXECutive since these operations are
essentially independent events. (The EXEC-
utive starts at location 10 266 in the assem-
bled object code listing shown in this book.)

If the reader does not desire to implement
the SAVE and LOAD commands, the two
vector locations (11 104 and 11 122) can be
used to direct the program back to the start
of the EXECutive in case a user inadver-
tently should enter one of those commands.

11-6

I/O routines may be placed on page 00 in
the system if desired. All of the locations on
that page were left for such use in the version
of SCELBAL illustrated in this publication.
If that page is not suitable, the I/O routines
may be tucked into some of the unused mem-
ory locations available in the assembled ver-
sion illustrated on pages 31 and 32 (if the
routines are relatively short). Alternately, the
reader may reduce the amount of area dedi-
cated to the storage of the user’s program
(USER PROGRAM BUFFER). If this is done
it i1s recommended that the upper portion of
the buffer area be used for that purpose.
Then the programmer need only change the
“end of buffer page” value (page 12 location
122) so that the buffer area is limited to
protect the installed 1/O routines.

SCELBAL ASSEMBLED FOR OPERATION IN AN 8008 BASED SYSTEM

This chapter presents an assembled version
of SCELBAL for operation in an 8008 based
microcomputer. This version may be loaded
into a system along with the user provided
1/0O subroutines to provide the user with
SCELBAL capability.

The user may elect, by choosing the proper
machine codes at key locations, to load the
program as an 8 K version that does not have
the optional DIM statement capability. This
version of the program will leave room for
about 1,250 bytes in the user program buffer.
Or, the user may load the program as a 12K
version with DIM capability. (Leaving about
4,500 bytes for program storage.) Alternately,
by changing a few specially marked locations,
the user may elect to have the program oper-
ate in 8 K of memory with DIM capability.
However, this version is not recommended
because it will leave only about 500 bytes for
storage of a high level language user program.
(It is mentioned as an option because some
prospective users may desire to run small pro-
grams that require the DIM capability.)
Finally, the user may opt to place the DIM
routines (by changing the associated pointers,
etc.) in the upper pages of available RAM
memory in any system having more than 8 K
of memory (such as a 10 K, 16 K, 32K sys-
tem) and using the area between the locations
used by the main SCELBAL routines and the
optional DIM routines as a user program buf-
fer.

The reader who has studied this book to
this point should have no difficulty under-
standing what is involved in selecting the
options just mentioned. Many readers may
well elect to make other alterations and may,
of course, do so at their own discretion. Let
it be said, that the version presented is just
one way in which the program may be as-
sembled for operation!

The reader should pay careful attention
in the following object code listing to all
locations marked by a double asterisk (**),

12-1

double at sign (@@), or double cross (F7).
The convention established in the earlier
chapters for those special indicators will be
reviewed here.

A double asterisk (**) is of importance
only to those readers who might elect to
change the memory pages used for the storage
of pointers, counters, temporary buffers and
look-up tables. The pages used for these pur-
poses in the version of SCELBAL presented
are pages 01, 26 and 27. Readers who take
on the task of re-assigning these pages will
probably have elected to completely re-
assemble SCELBAL and should be equipped
(mentally and with suitable hardware!) to
take on such a task.

A double cross (fF) denotes an elective
value on the part of the user. These locations
generally refer to the starting addresses of
user provided routines (such as I/O drivers),
or the assignment of the starting and ending
address of the user program buffer area. (For
the version presented the user program buffer
is assumed to start on page 33 and end on
page 54. The ending address would be
changed to page 37 if an 8 K system was be-
ing used and the DIM capability left out. Or,
page 34 for an 8 K system with DIM capa-
bility provided, etc.)

Locations marked with a @@ should be re-
placed with the machine code for a no-opera-
tion instruction, such as LAA, if the user will
not be using the optional DIM statement
capability. Alternately, some of these loca-
tions relating to addressing values would be
altered if the user elected to change the
storage areas for the DIM and associated
array handling subroutines.

It is suggested that user I/O subroutines
be placed on page 00 if possible. Alternately,
they may be placed in the upper regions of
available memory. If this is done, the ending
address of the user program buffer should be
altered accordingly.

Hopefully, all this information makes
plenty of sense to the serious reader who has
read this publication and is ready to imple-
ment SCELBAL.

One final word before presenting the ob-
ject code is in order. Do not attempt to skip
over the machine code listings provided for
the special pages 01, 26 and 27. The values
in the look-up tables must be in memory
along with the initial values of many of the
locations on those pages when the program

01 000 XXX
01 001 XXX
01 002 XXX
01 003 XXX
01 004 000
01 005 006
01 006 100
01 007 001
01010 XXX
01011 XXX
01012 XXX
01013 000
01014 000
01015 000
01 016 000
01017 000
01 020 XXX
01 021 XXX
01 022 XXX
01 023 XXX
01 024 000
01025 000
01 026 300
01 027 001
01 030 000
01 047 000
01 050 001
01 051 120
01 052 162
01 053 002
01 054 XXX
01 055 XXX
01 056 XXX
01 057 XXX

12-2

is first started. (Those locations where the
initial values are irrelevant are denoted by
XXX.) The format of the object code listing
for these special pages will be slightly diffe-
rent than the rest of the listing in that the
mnemonics column will contain comments
relating to the use of the locations (since the
locations will contain ‘“‘data” versus actual
instructions.)

An assembled listing for an 8008 version
of SCELBAL will now be presented.

Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floating
point

constant

value +1.0
Not Assigned
Not Assigned
Not Assigned
Exponent Counter
Stores floating
point

number
temporarily
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floating
point

constant

value -1.0
Scratch Pad Area

Scratch Pad Area
Stores random
number generator
constant

value

Not Assigned
Not Assigned
Not Assigned
Not Assigned

01 060 003 Stores random

01061 150 number generator
01 062 157 constant

01 063 014 value

01 064 000 Scratch Pad Area
01077 000 Scratch Pad Area
01100 000 Sign Indicator
01101 000 Sign Indicator
01102 000 Bits Counter

01 103 000 Sign Indicator
01104 000 Sign Indicator

01 105 000 Input Digit Counter
01 106 000 Temp Storage
01107 000 Output Digit Counter
01110 000 FP Mode Indicator
01111 XXX Not Assigned
01117 XXX Not Assigned
01120 000 FPACC Extension
01121 000 FPACC Extension
01122 000 FPACC Extension
01123 000 FPACC Extension
01 124 000 FPACC LSW
01125 000 FPACC NSW
01126 000 FPACC MSW

01 127 000 FPACC Exponent
01 130 000 FPOP Extension
01131 000 FPOP Extension

01 132 000 FPOP Extension
01133 000 FPOP Extension
01134 000 FPOP LSW

01 135 000 FPOP NSW

01136 000" FPOP MSW

01137 000 FPOP Exponent

01 140 000 Floating point working area
01 167 000 Floating point working area
01170 XXX Not Assigned
01177 XXX Not Assigned

01 200 000 Temporary

01 201 000 register

01 202 000 storage

01 203 000 area (D,E,H & L)

12 -3

01 204 XXX Not Assigned

01 205 XXX Not Assigned

01 206 XXX Not Assigned

01 207 XXX Not Assigned

01 210 000 Stores floating
01 211 000 point

01212 120 constant

01213 004 value +10.0
01214 147 Stores floating
01 215 146 point

01 216 146 constant

01 217 375 value +0.1

01 220 000 GETINP Counter
01 221 XXX Not Assigned

01 222 XXX Not Assigned

01 223 XXX Not Assigned

01 224 XXX Not Assigned

01 225 XXX Not Assigned

01 226 XXX Not Assigned

01 227 000 Arithmetic Stack Pointer
01 230 000 Arithmetic Stack
01 277 000 Arithmetic Stack
01 300 000 FPACC

01 301 000 temporary

01 302 000 storage

01 303 000 location

01 304 006G STEP value

01 505 000 temporary

01 306 000 storage

01 307 000 location

01 310 000 FOR/NEXT Limit
01 311 000 temporary

01 312 000 storage

01 313 000 location

01 314 0ge Array pointer

01 315 000 temporary

01 316 000 storage

01 317 000 location

Executive & special messages
look-up table and storage area.

01 320 004 (cc) for THEN
01 321 324 T
01 322 310 H
01 323 305 E
01 324 316 N

12 -4

01 325 002 (cc) for TO

01 326 324 T

01 327 317 ¢

01 330 004 (cc) for STEP
01 331 323 S

01 332 324 T

01 333 305 E

01 334 320 P

01 335 004 (cc) for LIST
01 336 314 L

01 337 311 I

01 340 323 S

01 341 324 T

01 342 003 (cc) for RUN
01 343 322 R

01 344 325 U

01 345 316 N

01 346 003 (cc) for SCR
01 347 323 S

01 350 303 C

01 351 322 R

01 352 013 (cc) for READY message
01 353 224 Ctrl T

01 354 215 Carriage-return
01 355 212 Line-feed

01 356 322 R

01 357 305 E

01 360 301 A

01 361 304 D

01 362 331 Y

01 363 215 Carriage-return
01 364 212 Line-feed

01 365 212 Line-feed

01 366 011 (cc) for AT LINE message
01 367 240 Space

01 370 301 A

01371 324 T

01 372 240 Space

01 373 314 L

01 374 311 I

01 375 316 N

01 376 305 E

01 377 240 Space

End of page 01.

12-5

02 000
02 003
02 005
02 007
02011
02013

02 015
02017
02 022
02 025
02027
02 032
02 034
02 037
02 041

02 044
02 046
02 051
02 054
02 056
02 060

02 061
02 063
02 064
02 066

02 067
02 071
02 074
02 0717
02 101
02104
02 106
02111
02 114
02116
02120
02122

02124
02126
02130
02133
02134

02137
02 140
02 141

106 255 002
066 340
056 026
076 000
066 201
076 001

066 201
106 240 002
150 044 002
074 260
160 061 002
074 272
120 061 002
066 340
106 314 002

066 201

106 003 003
110 015 002
066 203
076 000

007

066 201
317
066 202
371

066 202
106 240 002
150 171 002
074 275
150 210 002
074 250
150 215 002
106 310 002
066 203
076 001
056 027
066 000

036 026
046 120
106 332 002
053

106 356 022

060
307
044 300

ok

Hk

ko

12-6

SYNTAX,

SYNTX1,

SYNTX2,

SYNTX3,

SYNTX4,

SYNTX5,

SYNTXL,

CAL CLESYM
LLI 340
LHI 026
LMI 000
LLI 201
LMI 001

LLI 201

CAL GETCHR
JTZ SYNTX2
CPI 260

JTS SYNTX3
CPI 272

JFS SYNTX3
LLI 340

CAL CONCT1

LLI 201

CAL LOOP
JFZ SYNTX1
LLI 203

LMI 000
RET

LLI 201
LBM
LLI 202
LMB

LLI 202

CAL GETCHR
JTZ SYNTX6

CPI 275

JTZ SYNTX7

CPI 250

JTZ SYNTXS8

CAL CONCTS
LLI 203

LMI 001

LHI 027

LLI 000

LDI 026

LEI 120

CAL STRCP
RTZ

CAL SWITCH

INL
LAM
NDI 300

02 143
02 146
02 151
02 153
02 155
02 156
02 157
02160
02163
02 164
02 166

02171
02 173
02175
02 200
02 203
02 205
02 207

02 210
02 212
02 214

02 215
02 217
02 221

02 222
02 224

02 226
02 231
02232
02 235

02 240
02 241
02 243
02 246
02 247
02 251
02 252
02 254

02 255
02 257
02 261
02 263

02 264

110 137 002
106 356 022
066 203
056 026
317

010

371

106 356 022
301

074 015
110124 002

066 202
056 026
106 003 003
110 067 002
066 203
076 377
007

066 203
076 015
007

066 203
076 016
007

006 302
026 307

106 202 003
302

106 202 003
104 322 012

307
074120
120 222 002
360

056 026
307

074 240
007

066 120
056 026
076 000
007

074 301

k%

SYNTX®6,

* 3k

SYNTXT7,

SYNTXS,

BIGERR,

ERROR,

GETCHR,

CLESYM,
Kk

CONCTA,

12 -7

JFZ SYNTXL
CAL SWITCH
LLI 203

LHI 026

LBM

INB

LMB

CAL SWITCH
LAB

CPI 015

JFZ SYNTX5

LLI 202

LHI 026
CAL LOOP
JFZ SYNTX4
LLI 203

LMI 377
RET

LLI203
LMI 015
RET

LLI 203
LMI 016
RET

LAI 302
LCI 307

CAL ECHO
LAC

CAL ECHO
JMP FINERR

LAM
CP1120

JFS BIGERR
LLA

LHI 026
LAM

CPI 240
RET

LLI120
LHI 026
LMI 000
RET

CPI 301

02 266
02271
02273

02 276
02 300
02 303
02 305

02 310
02 312

02 314
02 3156
02 316
02 317
02 320
02 323
02 324
02 326

02 327

02 332
02 333
02 336
02 337
02 340
02 341

02 344
02 347
02 350
02 353

02 356
02 357
02 360
02 363
02 364
02 367

02 370
02 371
02 374

02 377
03 000
03 001
03 002

160 276 002
074 333
160 310 002

074 260
160 327 002
074 272
120 327 002

066 120
056 026

327

020

372

310

106 036 023
371

006 000

007

104 152 011

307
106 356 022
317
271
013
106 356 022

106 377 002
307

106 356 022
106 377 002

277
013
106 356 022
011
110 344 002
007

307
106 356 022
104 356 002

060
013
050
007

%k

12 -

CONCTN,

CONCTS,

CONCT1,

CONCTE,

STRCP,

STRCPL,

STRCPE,

STRCPC,

ADV,

JTS CONCTN
CPI 333
JTS CONCTS

CPI 260
JTS CONCTE
CPI 272
JFS CONCTE

LLI 120
LHI 026

LCM

INC

LMC

LBA

CAL INDEXC
LMB

LAI 000

RET

JMP SYNERR

LAM

CAL SWITCH
LBM

CPB

RFZ

CAL SWITCH

CAL ADV
LAM

CAL SWITCH
CAL ADV

CPM
RFZ
CAL SWITCH
DCB
JFZ STRCPL
RET

LAM
CAL SWITCH
JMP STRCPE

INL

RFZ
INH
RET

63 003
03 004
03 005
03 006
03010
03011
03 012
03013

03014

03016
03021
03023
03 026
03 030
03033
03034
03 037
03 042

03 045
03 047
03 052
03 054
03 057
03 061
03 064
03 067
03070
03071
03072
03074
03077

03102
03103
03106
03 107
03112

03113
03114
03115
03116
03 117
03120

03121
03122
03123

317
010
371
066 000
307
011
271
007

026 000

106 221 003
074 377
110 045 003
006 334
106 202 003
021

160 014 003
106 164 003
104 016 003

074203
150 313 012
074 215

150 102 003
074 212
150 016 003
106 377 002
020

370

302
074120
120 222 002
104 016 003

312
106 113 003
372
106 141 003
007

306
221
360
003
051
007

327
307
240

12 -

LOOP,

STRIN,

STRIN1,

NOTDEL,

STRINF,

SUBHL,

TEXTC,

LBM
INB
LMB
LLI 000
LAM
DCB
CPB
RET

LCI 000

CAL CINPUT
CPI 377

JFZ NOTDEL
LAI 334

CAL ECHO
DCC

JTS STRIN
CAL DEC
JMP STRIN1

CPI 203

JTZ CTRLC
CPI 215

JTZ STRINF
CPI 212

JTZ STRIN1
CAL ADV
INC

LMA

LAC
CPI120

JFS BIGERR
JMP STRIN1

LBC

CAL SUBHL
LMC

CAL CRLF
RET

LAL
SUB
LLA
RFC
DCH
RET

LCM
LAM
NDA

03124

03125
03130
03131
03134
03135
03 140

03 141
03 143
03 146
03 150
03 153
03 155
03157
03161
03 162
03163

03 164
03 165
03 166
03171

03172
03173

03174
03 175
03176
03177
03 200
03201

03 202
03 203
03 204
03 206
03 210
03211
03 212
03 213
03 216
03 217
03 220

03 221

03224
03 226

053

106 377 002 TEXTCL,
307

106 202 003

021

110125 003

007

006 215 CRLF,
106 202 003

006 212

106 202 003

066 043

056 001 o

076 001

353

364

007

061 DEC,
060

110 172 003

051

061 DECNO,
007

306 INDEXB,
201
360
003
050
007

335 ECHO,
346

066 043

056 001 *
317

010

371

106 11 1+ T
353

364

007

104 9% ¥+ T CINPUT,

066 227 EVAL,
056 001 ok

12 -10

RTZ

CAL ADV
LAM

CAL ECHO
DCC

JFZ TEXTCL
RET

LAI 215
CAL ECHO
LAI 212
CAL ECHO
LLI 043
LHI 001
LM1 001
LHD

LLE

RET

DCL

INL

JFZ DECNO
DCH

DCL
RET

LAL
ADB
LLA
RFC
INH

RET

LDH
LEL

LLI 043

LHI 001

LBM

INB

LMB

CAL 1+ 17
LHD

LLE

RET

IMP 1 T

LLI 227
LHI 001

03230
03 232
03233
03 235
03237
03 242
03 244
03 246
03 250
03 251
03 253

03 254
03 256
03 261
03 264
03 266
03 271
03273
03 275

03 300
03 302
03 305
03 307
03 310
03 311
03 314
03 316
03 317
03 321
03 324
03 326
03 331
03 333
03 336
03 340
03 342
03343

03 345
03 347

03 351
03 354

03 357
03 361
03 364
03 366
03 370

076 224
060

056 026
076 000
106 255 002
066 210
076 000
066 276
317

066 200
371

066 200
106 240 002
150 301 004
074 253
110 300 003
066 176
076 001
104 351 003

074 255

110 357 003
066 120

307

240

110 345003
066 176

307

074 007

150 345 003
074 003

150 152 011
074 005

150 152 011
066 120
076 001

060

076 260

066 176
076 002

106 324 004
104 301 004

074 252
110 373 003
066 176
076 003
104 351 003

%%

12-11

SCAN1,

SCAN2,

SCAN3,

SCANFN,

SCAN4,

LMI 224
INL

LHI 026
LMI 000
CAL CLESYM
LLI 210
LMI 000
LLI 276
LBM
LLI 200
LMB

LLI 200

CAL GETCHR
JTZ SCAN10
CPI 253

JFZ SCAN2
LLI176

LMI 001

JMP SCANFN

CPI 255

JFZ SCAN4
LLI 120

LAM

NDA

JFZ SCAN3
LLI176

LAM

CPI 007

JTZ SCAN3
CPI 003

JTZ SYNERR
CPI 005

JTZ SYNERR
LLI 120

LMI 001

INL

LMI 260

LLI176
LMI 002

CAL PARSER
JMP SCAN10

CPI 252

JFZ SCANb
LLI176

LMI 003

JMP SCANFN

03 373
03 375
04 000
04 002
04 004

04 007
04 011
04 014
04 016
04017
04 020
04 021
04024
04 026
04 030

04 033
04 035
04 040
04 042
04 044
04 047
04 052
04 054
04 056
04 057
04 060
04 061

04 064
04 066
04071
04073
04075

04 100
04102
04105
04 107
04110
04111
04 112
04115
04117
04 122
04124
04127
04131
04 132
04133

074 257
110 007 004
066 176
076 004
104 351 003

074 250
110 033 004
066 230
317

010

371

106 100 007
066 176
076 006
104 351 003

074 251

110 064 004
066 176
076 007

106 324 004
106 003 007
066 230

056 026

317

011

371

104 301 004

074 336
110 100 004
066 176
076 005
104 351 003

074 274

110 143 004
066 200

317

010

371

106 240 002
074 275

150 251 004
074 276

150 267 004
066 200

317

011

371

SCANS,

SCANGS,

SCANT,

Kk

SCANS,

SCAN9,

12-12

CPI 257

JFZ SCANG6
LLI 176

LMI 004

JMP SCANFN

CPI 250

JFZ SCAN7T
LLI 230

LBM

INB

LMB

CAL FUNARR
LLI 176

LMI 006

JMP SCANFN

CPI 251

JFZ SCANS
LLI 176

LMI 007
CAL PARSER
CAL PRIGHT
LLI 230

LHI 026
LBM

DCB

LMB

JMP SCAN10

CPI 336

JFZ SCANS
LLI176

LMI 005

JMP SCANFN

CP1 274

JFZ SCAN11
LLT 200
LBM

INB

LMB

CAL GETCHR
CPI 275

JTZ SCAN13
CPI 276

JTZ SCAN15
LLI 200
LBM

DCB

LMB

04 134
04136
04 140

04 143
04 145
04 150
04 152
04 153
04 154
04 155
04 160
04 162
04 165
04 167
04172
04174
04175
04176
04 177
04 201
04 203

04 206
04 210
04213
04 215
04 216
04 217
04 220
04 223
04 225
04 230
04 232
04 235
04237
04 240
04 241
04 242
04 244
04 246

04 251
04 253
04 255

04 260
04 262
04 264

04 267

066 176
076 011
104 351 003

074 275

110 206 004
066 200

317

010

371

106 240 002
074 274

150 251 004
074 276
150 260 004
066 200

317

011

371

066 176
076 012
104 351 003

074 276

110 276 004
066 200

317

010

371

106 240 002
074274

150 267 004
074 275
150 260 004
066 200

317

011

371

066 176
076 013

104 351 003

066 176
076 014
104 351 003

066 176
076 015
104 351 003

066 176

SCAN11,

SCAN12,

SCAN13,

SCAN14,

SCAN15,

12-13

LLI 176
LMI 011
JMP SCANFN

CPI 275

JFZ SCAN12
LLTI 200

LBM

INB

LMB

CAL GETCHR
CPI 274

JTZ SCAN13
CPI 276

JTZ SCAN14
LLT 200

LBM

DCB

LMB

LLI 176

LMI 012

JMP SCANFN

CPI 276

J¥Z SCAN16
LLI 200

LBM

INB

LMB

CAL GETCHR
CPI 274

JTZ SCAN15
CPI 275

JTZ SCAN14
LLI 200

LBM

DCB

LMB

LLI176

LMI 013

JMP SCANFN

LLI176
LMI 014
JMP SCANFN

LLI 176
LMI 015
JMP SCANFN

LLI176

04 271
04 273

04 276

04 301
04 303
04 305
04 306
04 307
04 310
04 312
04 313
04 314
04 315
04 320
04 323

04 324
04 326
04 330
04 331
04 332
04 335
04 336
04 337
04 341
04 344
04 346
04 351
04 353

04 356
04 357
04 360
04 362
04 365
04 366
04 367
04 370
04 372
04 375
04 377
05002

05 005
05 007
05 011
05012
05014
05015

076 016
104 351 003

106 310 002

066 200
056 026

317

010

371

066 277

307

011

271

110 254 003
104 300 031
000

066 120

056 026

307

240

150 231 005
060

307

074 256

150 356 004
074 260

160 033 005
074 272

120 033 005

061

307

074 001

150 005 005
206

360

307

074 305

110 005 005
066 200

106 240 002
104 310 002

066 227
056 001
307
004 004
370
360

SCAN16,

SCAN10,
sk

PARSER,
Hk

PARNUM,

NOEXPO,
sk

12-14

LMI 016
JMP SCANFN

CAL CONCTS

LLI 200
LHI 026
LBM

INB

LMB

LLI 277
LAM

DCB

CPB

JFZ SCAN1
JMP PARSEP
HLT

LLI 120

LHI 026
LAM

NDA

JTZ PARSE
INL

LAM

CPI 256

JTZ PARNUM
CPI 260

JTS LOOKUP
CPI 272

JFS LOOKUP

DCL

LAM

CPI 001

JTZ NOEXPO
ADL

LLA

LAM

CPI 305

JFZ NOEXPO
LLI 200

CAL GETCHR
JMP CONCTS

LLI 227
LHI 001
LAM
ADI 004
LMA
LLA

05016
05021
05 023
05 025
05 030

05 033
05035
05 037
05041
05043
05 045
05 047
05 050
05 052
05 055
05 057

05 061
05063
05 065
05 070
05071
05072
05073
05074
05 077
05 100
05103
05 104
05 105
05 106

05111
05114
05116
05120
05121
05 122
05123
05125
05127
05130
05131
05134
05136
05 140
05141
05 142
05143
05144

106 255 022
066 120
056 026
106 044 023
104 231 005

066 370
056 026
076 000
066 120
036 027
046 210
307
074 001
110 061 005
066 122
076 000

066 121
056 026
106 356 022
307

060

317

060

106 356 022
277

110111 005
060

301

277

150 201 005

106 256 006
066 370
056 026

317

010

371

066 077
056 027

301

2717

110 061 005
066 077

056 027

317

010

371

301

074 025

ek

ek

ook

Hok

*k

Kk

12-15

LOOKUP,

LOOKU1,

LOOKUZ2,

CAL FSTORE
LLI120

LHI 026

CAL DINPUT
JMP PARSE

LLI 370
LHI 026
LMI 000
LLI120
LDI 027
LEI 210
LAM
CPI 001
JFZ LOOKU1
LLI122
LMI 000

LLI 121

LHI 026

CAL SWITCH
LAM

INL

LBM

INL

CAL SWITCH
CPM

JFZ LOOKU2
INL

LAB

CPM

JTZ LOOKU4

CAL AD4DE
LLI 370

LHI 026
LBM

INB

LMB
LLIO77

LHI 027
LAB

CPM

JFZ LOOKU1
LLI 077

LHI 027
LBM

INB

LMB

LAB

CPI 025

05 146
05151
05153
05 155
05 157
05162
05163
05 164
05 165
05 166
05 167
05170
05171
05172
05173
05174
05175
05 177
05 200

05 201
05 204
05 206
05 210
05211
05213
05 214
05 215
05 220
05 223
05 226

05 231
05 234
05 236
05 237
05 241
05 244
05 246
05 247
05 250
05 252
05253
05 256
05 257
05 261
05 262
05263
05 264
05 267
05 272

120 222 002
066 121
056 026
016 002
106 013 021
364

353

250

370

060

370

060

370

060

370

306

024 004
340

335

106 317 022
066 227
056 001

307

004 004
370

360

106 255 022
106 337 022
106 356 022
106 244 022

106 255 002
066 176
307

074 007

150 332 005
004 240
360

317

066 210

327

106 036 023
307

004 257

360

301

277

150 307 005
160 307 005
066 176

k%

LOOKU4,

%k

PARSE,

12-16

JFS BIGERR
LLI 121

LHI 026

LBI 002
CAL MOVEIT
LLE

LHD

XRA

LMA

INL

LMA

INL

LMA

INL

LMA

LAL

SUI 004
LEA

LDH

CAL SAVEHL
LLI 227

LHI 001

LAM

ADI 004
LMA

LLA

CAL FSTORE
CAL RESTHL
CAL SWITCH
CAL FLOAD

CAL CLESYM
LLI176

LAM

CPI 007

JTZ PARSE2
ADI 240

LLA

LBM

LLI 210

LCM

CAL INDEXC
LAM

ADI 257

LLA

LAB

CPM

JTZ PARSE1
JTS PARSE1
LLI 176

05 274
05 275
05 277
05 300
05 301
05 302
05 305
05 306

05 307
05 311
05 312
05 313
05 314
05 315
05 316
05 317
05 321
05 322
05 323
05 324
05 327

05 332
05 334
05 336
05 337
05 340
05 341
05 342
05 343
05 346
05 350
05 351
05 352
05 353
05 355
05 356
05 361

05 364
05 366
05 370
05 371
05 373
05 375
05 376
05 377
06 002
06 004
06 005

317

066 210
327

020

372

106 036 023
371

007

066 210
307

206

360

307

240

053

066 210
327

021

372

106 364 005
104 231 005

PARSEL,

066 210
056 026 ok
307

206

360

307

240

150 104 006
066 210

327

021

372

074 006
053

106 364 005
104 332 005

PARSE2,

066 371

056 026 ok
370

066 227

056 001 Hk
307

360

106 266 022

066 227

307

024 004

FPOPER,

12 -17

LBM

LLI 210

LCM

INC

LMC

CAL INDEXC
LMB

RET

LLI 210
LAM

ADL

LLA

LAM

NDA

RTZ

LLI 210
LCM

DCC

LMC

CAL FPOPER
JMP PARSE

LLI 210

LHI 026

LAM

ADL

LLA

LAM

NDA

JTZ PARNER
LLI 210

LCM

DCC

LMC

CPI 006

RTZ

CAL FPOPER
JMP PARSE2

LLI 371
LHI 026
LMA
LLI 227
LHI 001
LAM
LLA
CAL OPLOAD
LLI 227
LAM
SUI 004

06 007
06 010
06 012
06 014
06 015
06 017
06 022
06 024
06 027
06 031
06 034
06 036
06 041
06 043
06 046
06 050
06 053
06 055
06 060
06 062
06 065
06 067
06 072
06 074
06 077
06 101
06 104
06 106
06 110
06112
06114
06116

06 121
06 124
06 126
06 127
06 130
06 133

06 136
06 141
06 143
06 144
06 145
06 150

06 153
06 156
06 160
06 161

~

370

066 371

056 026

307

074 001
150 211 020
074 002
150 032 021
074 003
150 046 021
074 004
150 322 021
074 005
150 263 006
074011
150 121 006
074 012
150 136 006
074 013
150 153 006
074 014
150173 006
074 015
150 213 006
074 016
150 230 006
066 230
056 026
076 000
006 311
026 250
104 226 002

106 032 021
066 126

307

240

160 242 006
104 247 006

106 032 021
066 126
307

240

150 242 006
104 247 006

106 032 021
066 126
307

240

ke

kg

12-18

PARNER,

LT,

EQ,

GT,

LMA

LLI 371
LHI 026
LAM

CPI 001
JTZ FPADD
CPI 002
JTZ FPSUB
CPI 003
JTZ FPMULT
CPI 004
JTZ FPDIV
CPI 005
JTZ INTEXP
CPI 011
JTZ LT

CPI 012
JTZ EQ
CPI 013
JTZ GT
CPI 014
JTZ LE

CPI 015
JTZ GE
CPI 016
JTZ NE
LLI 230
LHI 026
LMI 000
LAI 311
LCI 250
JMP ERROR

CAL FPSUB
LLI126
LAM

NDA

JTS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JTZ CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

06 162
06 165
06 170

06173
06 176
06 200
06 201
06 202
06 205
06 210

06 213
06 216
06 220
06 221
06 222
06 225

06 230
06 233
06 235
06 236
06 237

06 242
06 244

06 247
06 251
06 253

06 256
06 257
06 261
06 262

06 263
06 265
06 267
06 270
06 272
06 273
06 274
06 277
06 302
06 305
06 307
06 310
06 312
06 313

150 247 006
120 242 006
104 247 006

106 032 021
066 126

307

240

150 242 006
160 242 006
104 247 006

106 032 021
066 126
307

240

120 242 006
104 247 006

106 032 021
066 126
307

240

150 247 006

066 004
104 244 022

066 127
076 000
104 051 020

304
004 004
340
007

066 126
056 001

307

066 003
370

240

150 242 006
162 202 020
106 000 020
066 124

317

066 013

371

066 134

~

LE

GE,

NE

CTRUE, FPONE,

kok

12-19

CFALSE,

ADA4DE,

INTEXP,

JTZ CFALSE
JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM

NDA

JTZ CTRUE
JTS CTRUE
JMP CFALSE

CAL FPSUB
LLI 126
LAM

NDA

JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI 126
LAM

NDA

JTZ CFALSE

LLI 004
JMP FLOAD

LL1127
LMI 000
JMP FPZERO

LAE
ADI 004
LEA
RET

LLI 126
LHI 001
LAM

LLI 003
LMA

NDA

JTZ FPONE
CTS FPCOMP
CAL FPFIX
LLI124
LBM

LLI 013
LMB
LLI134

06 315
06 317
06 321
06 322
06 324
06 327
06 332
06 334
06 335
06 336

06 341
06 343
06 346
06 351
06 353
06 354
06 355
06 356
06 361

06 362
06 364
06 367
06 372
06 374
06 375
06 376
06 377
07 002

07 003
07 005
07 007
07 010
07 011
07 012
07 013
07 015
07 017
07 021
07 022
07 023
07 024
07 027
07 031
07 034
07 036
07 041
07 043
07 046

046 014

056 001

335

016 004

106 013 021
106 242 006
066 003

307

240

160 362 006

066 014

106 277 022
106 046 021
066 013

317

011

371

110 341 006
007

066 014
106 277 022
106 322 021
066 013
317

011

371

110 362 006
007

066 230
056 026
307

206

360

307

076 000
066 203
056 027

370

240

053

160 000 055
074 001
150 243 007
074 002

150 360 007
074 003

150 346 007
074 004

Kok

MULOOP,

DVLOOP,

PRIGHT,
s

k%

@@

12 - 20

LEI 014

LHI 001

LDH

LBI 004

CAL MOVEIT
CAL FPONE
LLI 003

LAM

NDA

JTS DVLOOP

LLIO14

CAL FACXOP
CAL FPMULT
LLI 013

LBM

DCB

LMB

JFZ MULOQP
RET

LLIO14

CAL FACXOP
CAL FPDIV
LLIO13

LBM

DCB

LMB

JFZ DVLOOP
RET

LLI 230
LHI 026
LAM

ADL

LLA

LAM

LMI 000
LLI 203
LHI 027
LMA
NDA

RTZ

JTS PRIGH1
CPI 001
JTZ INTX
CPI 002
JTZ SGNX
CP1 003
JTZ ABSX
CPI 004

07 050
07 053
07 055
07 060
07 062
07 065
07 067
07 072
07 074
07 077

07 100
07 102
07 104
07 105
07 106
07 107
07 111
07 113

07 115
07 117
07121
07 122
07 123
07 124
07 126
07 130
07 132
07 135
07 137
07 141
07 144
07 147
07 151
07 153
07 154
07 156
07 161
07 163
07 165
07 167

07 172
07 174
07 176
07 200
07 202
07 204

07 207

150 000 032
074 005

150 017 010
074 006

150 240 032
074 007

150 377 007
074 010

150 4 1+
000

066 120
056 026
307
240
053
066 202
056 027
076 000

066 202
056 027
317

010

371

026 002
066 274
056 026
106 230 007
036 026
046 120
106 332 002
150 207 007
066 202
056 027
307

074 010
110 115 007
066 202
056 027
076 000
104 054 0565

066 230
056 026
076 000
006 306
026 301
104 226 002

066 202

+

kK

kk

Kk

Hk

*k

sk

@@

(it

JTZ SQRX
CPI 005
JTZ TABX
CP1 006
JTZ RNDX
CP1 007
JTZ CHRX
CPI 010
JTZ UDEFX
HLT

LLI120
LHI 026
LAM
NDA
RTZ
LLI 202
LHI 027
LMI 00C

L1I 202

LHI 027

LBM

INB

LMB

LCI 002

LLI 274

LHI 026

CAL TABADR
LDI 026

LET 120

CAL STRCP
JTZ FUNAR4
LLT 202

LHI 027

LAM

CPI 010

JFZ FUNAR1
LLI 202

LHI 027

LMI 000

JMP FUNARZ2

LLI 230
LHI 026
LMI 000
LAI 306
LCI 301
JMP ERROR

LLI 202

07 211
07 213
07 214
07 216
07 220
07 221
07 224
07 225

07 230
07 231
07 232
07 233
07 236
07 237
07 240
07 241
07 242

07 243
07 245
07 247
07 250
07 251
07 254
07 256
07 261
07 264
07 266
07 270
07 273
07 275
07 300
07 303
07 305
07 306
07 307
07 312
07 314
07 317
07 321
07 324

07 327
07 332
07 334
07 336

07 341
07 343

056 027 *k
317

066 230

056 026 *k
327

106 036 023

371

104 255 002

301 TABADR,
002 TABADI,
021

110 231 007

206

360

003

050

007

066 126
056 001 ok
307

240

120 327 007
066 014
106 255 022
106 000 020
066 123
076 000
106 064 020
066 014
106 266 022
106 032 021
066 126
307

240

150 341 007
066 014
106 244 022
066 024
106 277 022
106 211 020

INTX,

106 000 020
066 123
076 000
104 064 020

INT1,

066 014
104 244 022

INT2,

12 - 22

LHI 027

LBM

LLI 230

LHI 026

LCM

CAL INDEXC
LMB

JMP CLESYM

LAB
RLC
DCC
JFZ TABAD1
ADL
LLA
RFC
INH
RET

LLI126

LHI 001

LAM

NDA

JFS INT1

LLI 014

CAL FSTORE
CAL FPFIX
LLI123

LMI 000

CAL FPFLT
LLI 014

CAL OPLOAD
CAL FPSUB
LLI 126

LAM

NDA

JTZ INT2
LLI 014

CAL FLOAD
LLI 024

CAL FACXOP
CAL FPADD

CAL FPFIX
LLI123
LMI 000
JMP FPFLT

LLI 014
JMP FLOAD

07 346
07 350
07 352
07 3563
07 354
07 357

07 360
07 362
07 364
07 365
07 366
07 367
07 372
07 374

07 377
10 002
10 004
10 005
10 010
10012
10 014
10016

10 017
10 022
10 024
10 025
10 027
10030
10 032
10 034
10036
10 041

10 042
10 043
10 045
10 050
10 051
10 054

10 055
10 057
10 061
10 062
10 063
10 066
10 070
10 072

066 126
056 001

307

240

160 202 020
007

066 126
056 001

307

240

053

120 242 006
066 024
104 244 022

106 000 020
066 124
307

106 202 003
066 177

056 026
076 377

007

106 000 020
066 124
307

066 043
227

066 177
056 026
076 377
160 217 031
053

320

006 240
106 202 003
021

110 045 010
007

066 201
056 027

307

240
150100010
076 000
066 204
367

ABSX,

k3k

SGNX,

k%

CHRX,

kK

TABX,
TABI,

ek

TABC,

TABLOP,

STOSYM,
%k

12-23

LLI 126

LHI 001
LAM

NDA

JTS FPCOMP
RET

LLI 126
LHI 001
LAM

NDA

RTZ

JFS FPONE
LLI 024
JMP FLOAD

CAL FPFIX
LLI124
LAM

CAL ECHO
LLI 177
LHI 026
LMI 377
RET

CAL FPFIX
LLI124
LAM

LLI 043
SUM

LLI 177

LHI 026

LMI 377

JTS BACKSP
RTZ

LCA

LATI 240
CAL ECHO
DCC

JFZ TABLOP
RET

LLI 201

LHI 027
LAM

NDA

JTZ STOSY1
LMI 000
LLI 204
LLM

10 073
10 075

10 100
10102
10 104
10106
10 110
10 112
10114
10 115
10117
10122
10124

10126
10130
10132
10 135
10136
10137
10 140
10 141
10 144
10 145
10 150
10 151
10 152
10 153

10 156
10 161
10 163
10 165
10 166
10 167
10170
10172
10174
10 175
10176
10 201
10 203
10 205
10 206
10 207
10 210
10 211
10 213
10 216
10 220

056 057
104 255 022

066 370
056 026
076 000
066 120
036 027
046 210
307
074 001
110126 010
066 122
076 000

066 121
056 026
106 356 022
307

060

317

060

106 356 022
277

110 156 010
060

301

277

150 227 010

106 256 006
066 370
056 026
317

010

371

066 077
056 027

301

277

110 126 010
066 077
056 027
317

010

371

301

074 025
120 222 002
066 121
056 026

T

kk

koK

%k

Kk

*k

Kok

¥k

12-24

STOSY1,

STOSY2,

STOSY 3,

LHI 057
JMP FSTORE

LLI 370
LHI 026
LMI 000
LLI120
LDI 027
LEI 210
LAM
CPI 001
JFZ STOSY2
LLI 122
LMI 000

LLI121

LHI 026

CAL SWITCH
LAM

INL

LBM

INL

CAL SWITCH
CPM

JFZ STOSY3
INL

LAB

CPM

JTZ STOSY5

CAL AD4DE
LLI 370

LHI 026
LBM

INB

LMB

LLI 077

LHI 027
LAB

CPM

JFZ STOSY2
LLI 077

LHI 027
LBM

INB

LMB

LAB

CPI1 025

JFS BIGERR
LLI121

LHI 026

10 222
10 224

10 227
10 232
10 235

10 240
10 242
10 244
10 245
10 247

10 252
10 254
10 256
10 257

10 261
10 262
10 263

10 266
10 270
10 272

10 275
10 277
10 301
10 304
10 305
10 306
10 311
10 313
10 315
10 317
10 321
10 324
10 327
10 331

10 333
10 334
10 335
10 340
10 343
10 346
10 351

10 354
10 356

016 002
106 013 021

106 356 022
106 255 022
104 255 002

066 120
056 026

335

046 144
104 261 010

066 144
056 026
335

046 120

317
010
104 013 021

066 352
056 001
106 121 003

066 000
056 026
106 014 003
307

240

150 275 010
066 335
056 001
036 026
046 000
106 332 002
110 354 010
066 000
056 033

307

240

150 266 010
106 121 003
106 377 002
106 141 003
104 333 010

066 342
056 001

koK

* %k

* ok

kK

kK
Kok

1

*ok

12-25

STOSYS5,

SAVESY,

RESTSY,

MOVECP,

EXEC,

EXEC1,

LIST,

NOLIST,

LBI 002
CAL MOVEIT

CAL SWITCH
CAL FSTORE
JMP CLESYM

LLI120

LHI 026

LDH

LEI 144

JMP MOVECP

LLI 144
LHI 026
LDH

LET 120

LBM
INB
JMP MOVEIT

LLI 352
LHI 001
CAL TEXTC

LLI 000
LHI 026
CAL STRIN
LAM

NDA

JTZ EXEC1
LLI 335
LHI 001
LDI 026
LEI 000
CAL STRCP
JFZ NOLIST
LLI 000
LHI 033

LAM

NDA

JTZ EXEC
CAL TEXTC
CAL ADV
CAL CRLF
JMP LIST

LLI 342
LHI 001

10 360
10 362
10 364
10 366
10 371
10 374
10 376
11 000
11 002
11 004
11 007
11 012
11014
11 016
11 020
11021
11 023
11 025
11 027
11031
11033
11 035
11037
11 041
11 043
11 045
11 046
11 050
11 052
11 054
11 056

11 060
11 062
11 063
11066

11071
11073
11 075
11 077
11 101
11104
11 107
11111
11113
11115
11 117
11122
11125
11127

046 000
036 026
046 000
106 332 002
150 070 013
036 026
046 000
066 346
056 001
106 332 002
110 071 011
056 026
066 364
076 033
060

076 000
066 077
056 027
076 001
066 075
076 000
066 120
076 000
066 210
076 000
060

076 000
056 033
066 000
076 000
056 057

076 000
060

110 060 011
104 266 010

046 272
036 001
056 026
066 000
106 332 002
150 T%F 1T
066 277
056 001
036 026
046 000
106 332 002
150 ¥+ 1+
066 360
056 026

Kk

&K

*K

e

TF

Kok

@@
@@
@@

T

@@
@@

@@
@@

3k
sk

Tt

ok
kK

T

* K

12 -26

SCRLOP,

NOSCR,

LEI 000
LDI 026
LEI 000
CAL STRCP
JTZ RUN
LDI 026
LEI 000
LLI 346
LHI 001
CAL STRCP
JFZ NOSCR
LHI 026
LLI 364
LMI 033
INL

LMI 000
LLI 077
LHI 027
LMI 001
LLI 075
LMI 000
LLI120
LMI 000
LLI 210
LMI 000
INL

LMI 000
LHI 033
LLI 000
LMI 000
LHI 057

LMI 000
INL

JFZ SCRLOP
JMP EXEC

LEI 272
LDI 001
LHI 026
LLI 000
CAL STRCP
JTZ SAVE
LLI 277
LHI 001
LDI 026
LEI 000
CAL STRCP
JTZ LOAD
LLI 360
LHI 026

11131
11133
11134
11 136
11141
11143
11 145
11 146
11 147

11 152
11154
11 156

11 161
11163
11 164
11 165
11 170
11172
11174
11175

11177
11 201
11 203
11 205
11 207

11 211
11 213
11 216
11 221
11 223
11 226
11 230
11 233
11 235
11 237

11 242
11 244
11 246
11 247
11 250
11 251
11 253
11 2565
11 256
11 257
11 260

076 033
060

076 000

106 000 002
066 203
056 026
307

240

120 161 011

006 323
026 331
104 226 002

066 340

307

240

150 211 013
066 360
076 033
060

076 000

066 201
056 026
076 001
066 350
076 000

066 201
106 123 012
150 242 011
074 260
160 267 011
074 272
120 267 011
066 350
056 026
106 314 002

066 201
056 026
317
010
371
066 360
056 026
327
060
367
352

T
sk

SYNERR,

SYNTOK,
TF

GETAUX,
%

GETAUO,
ET3

GETAUL,

sk

*k

12-27

LMI 033

INL

LMI 000

CAL SYNTAX
LLI 203

LHI 026

LAM

NDA

JFS SYNTOK

LAI 323
LCI 331
JMP ERROR

LLI 340
LAM

NDA

JTZ DIRECT
LLI 360

LMI 033

INL

LMI 000

LLI 201
LHI 026
LMI 001
LLI 350
LMI 000

LLI 201
CAL GETCHP
JTZ GETAU1
CPI 260
JTS GETAU2
CPI 272
JFS GETAU2
LLI 350
LHI 026
CAL CONCT1

LLI 201
LHI 026
LBM
INB
LMB
LLI 360
LHI 026
LCM
INL
LLM
LHC

11 261 307
11 262 011
11 263 271
11 264 110 211 011

11 267 066 360 GETAU2,
11 271 056 026 ok

11 273 337

11 274 060

11 275 367

11 276 353
11 277 307
11 300 240
11 301 110 336 011
11 304 104 005 012

Note open addresses.
This space available
for patching.

11 336 066 350 NOTEND,
11 340 056 026 o
11 342 036 026 **

11 344 046 340
11 346 106 332 002

11 351 160 073 012

11 354 110 005 012

11 357 066 360

11 361 056 026 w*

11 363 327
11 364 060
11 365 367
11 366 352
11 367 317

11 370 010

11 371 106 144 012

11 374 066 203

11 376 056 026 wk

12 000 307

12 001 240

12002 150 266 010

12 005 066 360 NOSAME,
12 007 056 026 i

12 011 337

12 012 060

12 013 347

12014 066 000

12016 056 026 *
12020 317

12021 010

12-28

LAM

DCB

(CPB

JFZ GETAUQ

LL1 360

LHI 026

LDM

INL

LLM

LHD

LAM

NDA

JFZ NOTEND
JMP NOSAME

LLI 350

LHI 026

LDI 026

LET 340
CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI 360

LHI 026
LCM

INL

LLM

LHC

LBM

INB

CAL REMOVE
LLI 203

LHI 026
LAM

NDA

JTZ EXEC

LLI 360
LHI 026
LDM
INL
LEM
LLI 000
LHI 026
LBM
INB

12 022
12 025
12 027
12 031
12 032
12 033
12 034
12 036
12 040
12 043

12 046
12 047

12 050
12 051
12 054
12 057
12 060
12063
12 066
12 067
12072

12 073
12075
12 077
12100
12101
12 102
12103
12104
12105
12 106
12111
12113
12115
12116
12117
12120

12123
12125
12126
12 130
12131
12132
12133
12136
12137
12 140

106 205 012
066 360

056 026

337

060

347

066 000
056 026

106 046 012
104 275 010

317
010

307
106 377 602
106 356 022
370
106 377 002
106 356 022
011
110 050 012
007

066 360
056 026
337

060

347

353

364

317

010

106 305 012
066 360
056 026
373

060

374

104 177 011

056 026
317

066 360
337

060

347

106 305 012
353

364

307

KoK

wk

kK

*k

$ek

-29

MOVEC,

MOVEPG,

CONTIN,

GETCHP,

CAL INSERT
LLI 360

LHI 026
LDM

INL

LEM

LLI 000

LHI 026
CAL MOVEC
JMP EXEC1

LBM
INB

LAM

CAL ADV
CAL SWITCH
LMA

CAL ADV
CAL SWITCH
DCB

JFZ MOVEPG
RET

LLI 360

LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360

LHI 026
LMD

INL

LME

JMP GETAUX

LHI 026
LBM

LLI 360
LDM

INL

LEM

CAL ADBDE
LHD

LLE

LAM

12 141
12 143

12144
12 147
12 150
12153
12 154
12155
12 156
12 161
12 164

12 167
12171
12173
12174
12175
12176
12177
12 200
12 201
12 202
12 203
12 204

12 205
12 207
12 211
12 212
12 213
12 214
12 215
12 220
12 221
12 223
12 226

12 231
12 232
12 235
12 236
12 241
12 244
12 247
12 252

12 255
12 257
12 261
12 262

074 240
007

106 174 003
327
106 113 003
372
302
240
150 167 012
106 377 002
104 144 012

066 364
056 026
337
060
307
221
370
003
061
031
373
007

066 364
056 026

307

060

367

350

106 174 003
305

074 054

120 222 002
106 113 003

327

106 174 003
372

106 113 003
106 277 012
150 255 012
106 164 003
104 231 012

066 000
056 026
317
010

Kk

3k

Tt

Kk

REMOVE,

REMOV1,

INSERT,

INSER1,

INSER3, INCLIN,

12-30

CPI 240
RET

CAL INDEXB
LCM

CAL SUBHL
LMC

LAC

NDA

JTZ REMOV1
CAL ADV
JMP REMOVE

LLI 364
LHI 026
LDM
INL
LAM
SUB
LMA
RFC
DCL
DCD
LMD
RET

LLI 364

LHI 026
LAM

INL

LLM

LHA

CAL INDEXB
LAH

CPI 054

JFS BIGERR
CAL SUBHL

LCM

CAL INDEXB
LMC

CAL SUBHL
CAL CPHLDE
JTZ INSER3
CAL DEC
JMP INSER1

LLI 000
LHI 026
LBM
INB

12 263
12 265
12 266
12 267
12 270
12 273
12 274
12 275
12 276

12 277
12 300
12 301
12 302
12 303
12 304

12 305
12 306
12 307
12 310
12 311
12 312

12 313
12 315
12 317

12 322
12 324
12 326
12 327
12 330
12 333
12 335
12 337
12 342
12 344
12 346

12 351
12 354

12 357
12 361
12 363

12 366
12 370
12 372

066 364
337

060

347

106 305 012
374

061

373

007

305
273
013
306
274
007

304
201
340
003
030
007

006 336
026 303
104 226 002

066 340
056 026
307

240

150 351 012
066 366
056 001

106 121 003
066 340
056 026
106 121 003

106 141 003
104 266 010

006 304
026 332
104 226 002

006 306
026 330
104 226 002

B

koK

3k

12-31

CPHLDE,

ADBDE,

CTRLC,

FINERR,

FINERTI,

DVERR,

FIXERR,

LLI 364
LDM

INL

LEM

CAL ADBDE
LME

DCL

LMD

RET

LAH
CPD
RFZ
LAL
CPE
RET

LAE
ADB
LEA
RFC
IND

RET

LAI 336
LCI 303
JMP ERROR

LLI 340
LHI 026
LAM

NDA

JTZ FINER1
LLI 366
LHI 001
CAL TEXTC
LLI 340

LHI 026
CAL TEXTC

CAL CRLF
JMP EXEC

LAI 304
LCI 332
JMP ERROR

LATI 306
LCI 330
JMP ERROR

12 375
12 377
13 001
13 003
13 005
13 007

13012
13014

13016
13021
13 024
13025
13 030
13033
13 036
13 041
13 043
13 045
13 046
13 047
13 052
13 055
13 060

13 061
13 063

13 064
13 065
13 066
13 667

13 070
13072
13074
13076
13 100
13102
13104
13 106
13110
13111
13113

13116
13120
13122
13123
13124

006 311 NUMERR,
026 316

066 220

056 001 ok

076 000

104 226 002

036 026 ok INSTR,
046 000

106 064 013 INSTR1,
106 317 022

317

106 377 002

106 370 002

150 337 022

106 337 022

066 000

056 026 ok
307

274

150 061 013

106 337 022

104 016 013

000

046 000 INSTR2,
007

040 ADVDE,
013
030
007

066 073 RUN,
056 027 sk
076 000

066 205

076 000

066 360

056 026 =
076 033 ++
060

076 000

104 156 013

066 360 NXTLIN,
056 026 Hk

337

060

347

12- 32

LAI 311
LCI 316
LLI 220
LHI 001
LMI 000
JMP ERROR

LDI 026
LEI 000

CAL ADVDE
CAL SAVEHL
LBM

CAL ADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLI 000

LHI 026

LAM

CPE

JTZ INSTR2
CAL RESTHL
JMP INSTR1
HLT

LEI 000
RET

INE
RF¥Z
IND
RET

LLIO073
LHI 027
LMI 000
LLI 205
LMI 000
LLI 360
LHI0O26
LMI 033
INL
LMI 000
JMP SAMLIN

LLI 360
LHI 026
LDM
INL
LEM

13 125
13126
13127
13 130
13131
13134
13136
13 140
13 141
13 142
13 143
13 145
13 147
13150
13151
13 154
13 155

13 156
13 160
13162
13 163
13 164
13 165
13 166
13170
13172
13175
13 177
13 201
13 202
13 203
13 206

13 211
13 213
13 215
13 216
13 220
13 223
13 225
13 230
13 232
13 235
13 237
13 242
13 244
13 247
13 251
13 2564
13 256

353

364

317

010

106 305 012
066 360
056 026
373

060

374

066 340
056 026
307

240

150 266 010
300

300

066 360

056 026

327

060

367

352

036 026

046 000

106 046 012
066 000
056 026

307

240

150 266 010
106 000 002

066 203
056 026
307

074 001
150 116 013
074 002
150 027 016
074 003
150 031 015
074 004
150 174 015
074 005
150 345 013
074 006
150 365 016
074 007
150 164 017

*ok

kK

kK

koK

L]

k3K

12-33

SAMLIN,

DIRECT,

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360
LHI 026
LMD

INL

LME

LLI 340
LHI 026
LAM
NDA

JTZ EXEC
LAA

LAA

LLI 360

LHI 026
LcM'

INL

LLM

LHC

LDI 026

LEI 000
CAL MOVEC
LLI 000

LHT 026
LAM

NDA

JTZ EXEC
CAL SYNTAX

LLI 203
LHI 026
LAM

CPI 001
JTZ NXTLIN
CPI 002
JTZ IF

CPI 003
JTZ LET
CPI 004
JTZ GOTO
CPI 005
JTZ PRINT
CPI 006
JTZ INPUT
CPI 007
JTZ FOR

13 261
13 263
13 266
13 270
13 273
13 275
13 300
13 302
13 305
13 307
13 312
13 314
13 317
13 321
13 324
13 327
13 331
13 333
13 334
13 336
13 337
13 342

13 345
13 347
13 351
13 352
13 354
13 355
13 360
13 363

13 366
13 371
13 373
13 375
13 376
13 377
14 001

14 002
14 004
14 007
14 011
14014
14 016
14 021
14 023
14 026
14 030
14 033

074 010
150 013 030
074 011
150236 016
074 012
150 304 016
074 013
150 365 055
074 014
150 266 010
074 015
150 013 015
074 016
110 152 011
106 153 055
066 206
056 026
317

066 202
371

106 240 010
104 042 015

066 202
056 026

307

066 000

277

160 366 013
106 141 003
104116 013

106 255 002
066 202
056 026

317

010

066 203

371

066 203
106 240 002
074 247
150 203 014
074 242
150 203 014
074 254
150 043 014
074 273
150 043 014
066 203

@@

@@

@@
@@
@@**
@@
@@
@@
@@
@@

PRINT,
*ok

PRINTI,

ek

PRINT2,

12-34

CPI 010

JTZ NEXT
CPI011

JTZ GOSUB
CPI012

JTZ RETURN
CPI 013

JTZ DIM

CPI 014

JTZ EXEC
CPI 015

JTZ LETO
CPI 016

JFZ SYNERR
CAL ARRAY1
LLI 206

LHI 026

LBM

LLI 202

LMB

CAL SAVESY
JMP LET1

LLI 202

LHI 026
LAM

LLI 000

CPM

JTS PRINT1
CAL CRLF
JMP NXTLIN

CAL CLESYM
LLI 202

LHI 026

LBM

INB

LLI 203

LMB

LLI 203
CAL GETCHR
CPI 247
JTZ QUOTE
CPI 242
JTZ QUOTE
CPI 254
JTZ PRINT3
CPI 273
JTZ PRINT3
LLI 203

14 035
14 040

14 043
14 045
14 046
14 047
14 051
14 052
14 054
14 055
14 056
14 060
14 061
14 063
14 064
14 065
14 070
14 072

14 075
14 100
14 102
14 104
14 105
14 106
14110
14 112

14 114
14 117
14121
14 123

14125
14 127
14 132
14134
14 137
14 141
14 143
14 144
14 146
14 147
14 151
14 152
14 153
14 156
14 160
14 163
14 165

106 003 003
110002 014

066 202

317

010

066 276
371

066 203

317

011

066 277

371

066 367

307

240

150 075 014
076 000
104 125014

106 224 003
066 177
056 026
307

240

066 110
056 001
076 377

152 314 014
066 177
056 026
076 000

066 203
106 240 002
074 254
152 357 014
066 203
056 026

317

066 202
371

066 000
301

277

160 366 013
066 000

106 240 002
074 254
150 116 013

skk

sk 3k

sk

bk

12-35

PRINTS,

PRINT4,

PRINTS,

PRINTS®,

CAL LOOP
JFZ PRINT2

LLI 202
LBM

INB

LLI 276
LMB

LLI 203
LBM

DCB

LLI 277
LMB

LLI 367
LAM

NDA

JTZ PRINT4
LMI 000
JMP PRINT6

CAL EVAL
LLI177
LHI 026
LAM

NDA
LLI110
LHI 001
LMI 377

CTZ PFPOUT
LLI177
LHI 026
LMI 000

LLI 203

CAL GETCHR
CPI 254

CTZ PCOMMA
LLI 203

LHI 026

LBM

LLI 202

LMB

LLI 000

LAB

CPM

JTS PRINT1
LLI 000

CAL GETCHR
CPI 254

JTZ NXTLIN

14170
14 172
14175
14 200

14 203
14 205
14 206
14 211
14 213
14 214
14 215
14 217

14 220
14 222
14 225
14 227
14 230
14 233
14 236
14 240
14 243

14 246
14 250
14 252
14 254
14 256
14 260

14 263
14 265
14 266
14 270
14 271
14 272
14 274
14 275
14 300
14 303
14 305
14 307
14 311

14 314
14 316
14 320
14 321
14 322
14 325

074 273

150 116 013
106 141 003
104116 013

066 367
370

106 255 002
066 203
317

010

066 204
371

066 204
106 240 002
066 367

277

150 263 014
106 202 003
066 204
106 003 003
110 220 014

006 311
026 321
066 367
056 026
076 000
104 226 002

066 204
317

066 202
371

301

066 000
277

110 366 013
106 141 003
066 367
056 026
076 000
104 116 013

066 126
056 001
307

240

150 336 014
060

QUOTE,

QUOTEL,

QUOTER,

Kk

QUOTEZ2,

*3k

PFPOUT,
*%

12-36

CPI 273

JTZ NXTLIN
CALCRLF
JMP NXTLIN

LLI 367

LMA

CAL CLESYM
LLI 203

LBM

INB

LLI 204

LMB

LLI 204

CAL GETCHR
LLI 367

CPM

JTZ QUOTE2
CAL ECHO
LLI 204

CAL LOOP
JFZ QUOTE1

LAI 311
LCI 321
LLI 367
LHI 026
LMI 000
JMP ERROR

LLI 204
LBM

LLI 202
LMB

LAB

LLI 000
CPM

JFZ PRINT1
CAL CRLF
LLI 367

LHI 026
LMI 000
JMP NXTLIN

LLI126
LHI 001
LAM

NDA

JTZ ZERO
INL

14 326
14 327
14 330
14 333

14 336
14 34¢
14 343
14 345

14 350
14 352
14 354

14 357
14 361
14 362
14 364
14 365
14 366
14 370
14 372
14 373
14 375
14 377
15 000
15 001

15003
15 006
15 007
15012

15013
15 016
15 020
15 022
15023
15025
15 026

15 031
15034
15 036
15 040

15 042
15 044
15 046
15 047
15 050

307
240
150 350 014
104 165 024

006 240
106 202 003
006 260
104 202 003

066 110
076 000
104 165 024

066 000
307
066 203
227
063
066 043
056 001
307
044 360
004 020
227
320
006 240

106 202 003
021
110 003 015
007

106 240 010
066 202
056 026
317

066 203
371

104 141 015

106 255 002
066 144
056 026
076 000

066 202
056 026
317
010
066 203

e s

koK

*k

sk

12-37

ZERO,

FRAC,

PCOMMA,

PCOM1,

LETO,

LET,

LET1,

LAM

NDA

JTZ FRAC
JMP FPOUT

LAT 240
CAL ECHO
LAI 260
JMP ECHO

LLI 110
LMI 000
JMP FPOUT

LLI 000
LAM
LLI 203
SUM
RTS
LLI 043
LHI1 001
LAM
NDI 360
ADI1 020
SUM
LCA
LAI 240

CAL ECHO
DCC
JFZ PCOM1
RET

CAL SAVSYM

LLI 202
LHI 026
LBM

LLI 203
LMB

JMP LETS

CAL CLESYM

LLI144
LHI 026
LMI 060G

LLI 202
LHI 026
LBM
INB
LLI 203

15 052

15 053
15 0565
15 060
15063
15065
15070
15072
15075
15100
15102
15104
15105
15107
15110

15113
15115
15117

15122
15124
15127

15132
15134
15136

15141
15143
15145
15 146
15 147
15151
15152
15154
15155
15157
15160
15163
15 166
15171

15174
15176
15 200
15 202
15 204
15 205
15 206

371

066 203
106 240 002
150122 015
074 275
150 141 015
074 250
110 113 015
106 145 055
066 206
056 026
317

066 203
371

104 122 015

066 144
056 026
106 314 002

066 203
106 003 003
110 053 015

006 314
026 305
104 226 002

066 203
056 026

317

010

066 276
371

066 000
317

066 277

371

106 224 003
106 252 010
106 055 010
104116 013

066 350
056 026
076 000
066 202
317

010

066 203

@@

@@
@@
@@**
@@
@@
@@
@@

$k

sk

KK

12 -38

LET2,

LETS3,

LET4,

LETERR,

LETS5,

GOTO,

LMB

LLI 203

CAL GETCHR
JTZ LET4
CPI 275

JTZ LET5
CPI 250

JFZ LET3
CAL ARRAY
LLI 206

LHI 026
LBM

LLI 203
LMB

JMP LET4

LLI 144
LHI 026
CAL CONCT1

LLI 203
CAL LOOP
JFZ LET2

LAI 314
LCI 305
JMP ERROR

LLI 203

LHI 026

LBM

INB

LLI 276

LMB

LLI 000

LBM

LLI 277

LMB

CAL EVAL
CAL RESTSY
CAL STOSYM
JMP NXTLIN

LLI 350
LHI 026
LMI 000
LLI 202
LBM

INB

LLI 203

15 210

15 211
15213
15 216
15 221
15 223
15 226
15 230
15 233
15 235

15 240
15 242
15 245

15 250
15 252
15 254
15 256
15 257

15 261
15 264
15 266

15 270
15 272
15 275
15 300
15 302
15 305
15 307
15312

15 315
15 317
15 321
15 322
15 323
15 324
15 326
15 327
15 336
15 331
15 332
15 333
15 334
15 335

15 340

371

066 203
106 240 002
150 240 015
074 260
160 250 015
074 272
120 250 015
066 350
106 314 002

066 203
106 003 003
110 211 015

066 360
056 026
076 033
060

076 000

106 255 002
066 204
076 001

066 204
106 123 012
150 315 015
074 260
160 340 015
074 272
120 340 015
106 310 002

066 204
056 026
317
010

371

066 360
327

060

367

352

307

011

271

110 270 015

066 120

3k

T

&k

GOTO1,

GOTO2,

GOTO3,

GOTO4,

GOTOb,

GOTOG®,

GOTO7,

LMB

LLI 203

CAL GETCHR
JTZ GOTO2
CPI 260

JTS GOTO3
CPI 272

JFS GOTO3
LLI 350

CAL CONCT1

LLI 203
CAL LOOP
JFZ GOTO1

LLI 360
LHI 026
LMI 033
INL

LMI 000

CAL CLESYM
LLI 204
LMI 001

LLI 204

CAL GETCHP
JTZ GOTO6
CPI 260

JTS GOTO7
CPI 272

JFS GOTO7
CAL CONCTS

LLI 204
LHI 026
LBM
INB
LMB
LLI 360
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GOTOb

LLI120

15 342
15 344
15 346
15 350
15 353
15 356
15 360
15 362
15 363
15 364
15 365
15 366
15 367
15370
15 371
15 374
15 376
16 000
16 001
16 002
16 003
16 005
16 006
16 007
16 012
16 013
16 014
16 015

16 020
16 022
16 024

16 027
16 031
16 033
16 034
16 035
16 037
16 040
16 043
16 045
16 047
16 052
16 053
16 054
16 057
16 061
16 063
16 066
16 067

056 026 ok
036 026 *E
046 350

106 332 002

150 156 013

066 360

056 026 *k
337

060

347

353

364

317

010

106 305 012

066 360

056 026 *k
373

060

374

066 364

303

277

110 261 015

060

304

2717

110 261 015

006 325
026 316
104 226 002

066 202

056 026 Ak
317

010

066 276

371

106 255 002

066 320

056 001 **
106 012 013

304

240

110102 016

066 013

056 027 ok
106 012 013

304

240

12- 40

GOTOER,

IF,

LHI 026
LDI 026
LEI 350
CAL STRCP
JTZ SAMLIN
LLI 360
LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360
LHI 026
LMD

INL

LME

LLI 364
LAD

CPM

JFZ GOTO4
INL

LAE

CPM

JFZ GOTO4

LAI 325
LCI 316
JMP ERROR

LLI 202
LHI 026
LBM

INB

LLI 276
LMB

CAL CLESYM
LLI 320
LHI 001
CAL INSTR
LAE

NDA

JFZ IF1
LLIO013
LHI 027
CAL INSTR
LAE

NDA

16 070

16 073
16 075
16 077

16 102
16 104
16 106
16 107
16 110
16 113
16 115
16117
16 120
16121
16 124
16 126
16130
16 131
16 133
16 135
16 136
16 137
16 140
16 142

16 143
16 145
16 150
16 153
16 155
16 160
16 163

16 166
16 170
16 173
16 175

16 200
16 202
16 203
16 205
16 206
16 207
16 210
16 211
16 213
16 214
16 215

110102 016

006 311
026 306
104 226 002

066 277
056 026
041

374

106 224 003
066 126
056 001

307

240

150 116 013
066 277

056 026
307

004 005
066 202
370

310

010

066 204
371

066 204

106 240 002
110 166 016
066 204

106 003 003
110143016
104 073 016

074 260
160 200 016
074 272
160174 015

066 000
307
066 204
227
310
010
327
066 000
371
362
036 026

K

Kok

koK

kel

12-41

IFERR,

IF1,

IF2,

IF3,

IF4,

JFZ IF1

LAI 311
LCI 306
JMP ERROR

LLI 277
LHI 026
DCE

LME

CAL EVAL
LLI 126
LHI 001
LAM

NDA

JTZ NXTLIN
LLI 277
LHI 026
LAM

ADI 005
LLI 202
LMA

LBA

INB

LLI 204
LMB

LLI 204

CAL GETCHR
JFZ IF3

LLI 204

CAL LOOP
JFZ IF2

JMP IFERR

CPI 260
JTS IF4
CPI 272
JTS GOTO

LLI 000
LAM
LLI 204
SUM
I.BA
INB
LCM
LLI 000
LMB
LLC
LDI 026

16 217
16 221
16 224
16 226
16 230
16 233

16 236
16 240
16 242
16 243
16 244
16 245
16 250
16 252
16 253
16 254

16 255
16 257
16 261
16 262
16 264
16 266
16 271
16 272
16 274
16 275
16 276
16 277
16 300
16 301

16 304
16 306
16 310
16 311
16 313
16 316
16 317
16 321
16 323
16 324
16 325
16 326
16 327
16 330
16 333
16 334
16 335
16 337

046 001
106 013 021
066 202
076 001
106 067 002
104 211 013

066 340
056 026

337

030

031

150 255 016
066 360

337

060

347

066 073
056 027
307

004 002
074 021

120 347 016
370

066 076

206

360

373

060

374
104174 015

066 073
056 027

307

024 002
160 356 016
370

004 002
066 076

206

360

337

030

031

150 266 010
060

347

066 360
056 026

GOSUB,

KK

GOSUBI,
sk

RETURN,

*3k

* %

12 -42

LEI 001
CAL MOVEIT
LLI 202
LMI 001
CAL SYNTAX4
JMP DIRECT

LLI 340

LHI 026
LDM

IND

DCD

JTZ GOSUB1
LLI 360
LDM

INL

LEM

LLIO73
LHI 027
LAM

ADI 002
CPI 021
JFS GOSERR
LMA
LLIO76
ADL

LLA

LMD

INL

LME

JMP GOTO

LLIO73
LHI 027
LAM

SUI 002
JTS RETERR
LMA

ADI 002
LLI 076
ADL

LLA

LDM

IND

DCD

JTZ EXEC
INL

LEM

LLI 360
LHI 026

16 341
16 342
16 343
16 344

16 347
16 351
16 353

16 356
16 360
16 362

16 365
16 370
16 372
16 373
16 374
16 376

16 377
17 001
17 004
17 007
17 011
17 014
17 016
17 021
17 024
17 026
17 030
17 031
17033
17 034

17 037

17 042
17 044
17 047
17 052
17 055
17 060

17 063
17 066
17 071
17073
17 075
17 076
17 100

373
060
374
104116 013

006 307
026 323
104 226 002

006 322
026 324
104 226 002

106 255 002
066 202
317

010

066 203
371

066 203
106 240 002
150 042 017
074 254
150 063 017
074 250

110 037 017
106 160 055
066 206
056 026

317

066 203

371

104 042 017

106 310 002

066 203

106 003 003
110 377 016
106 104 017
106 055 010
104 116 013

106 104 017
106 055 010
056 026

066 203

317

066 202

371

GOSERR,

RETERR,

INPUT,

INPUT1,
@@
@@

@@**

@@
@@
@@
@@

INPUT?2,

INPUTS,

INPUT4,

sk

12-43

LMD

INL

LME

JMP NXTLIN

LAI 307
LCI 323
JMP ERROR

LAI 322
LCI 324
JMP ERROR

CAL CLESYM
LLI 202

LBM

INB

LLI 203

LMB

LLI 203

CAL GETCHR
JTZ INPUTS3
CPI 254

JTZ INPUT4
CPI 250

JFZ INPUT2
CAL ARRAY2
LLI 206

LHI 026

LBM

LLI 203

LMB

JMP INPUTS3

CAL CONCTS

LLI 203

CAL LOOP
JFZ INPUT1
CAL INPUTX
CAL STOSYM
JMP NXTLIN

CAL INPUTX
CAL STOSYM
LHI 026

LLI 203

LBM

LLI 202

LMB

17 101

17 104
17 106
17 107
17110
17 111
17112
17114
17117
17121
17122
17123
17124
17127
17 132
17 134
17135

140
142
144
146
151
154

-1 =1 -1 =3

~X

e g ey

~

104 365 016

066 120
307

206

360

307

074 244
110 140 017
066 120
317

011

371

106 157 017
106 221 003
066 124
370

104 064 020

066 144
056 026
006 277
106 202 003
106 014 003
104 044 023

056 001
104 247 006

066 144
056 026
076 000
066 146
076 000
066 205
056 027
317
010
371
066 360
056 026
337
060
347
301
002
002
004 134
360
056 027
373

ok

ok

kg

* 3k

* 3k

12-44

INPUTX,

INPUTN,

FPO,

FOR,

JMP INPUT

LLI120
LAM

ADL

LLA

LAM

CPI 244

JFZ INPUTN
LLI120
LBM

DCB

LMB

CAL FPO
CAL CINPUT
LLI124
LMA

JMP FPFLT

LLI144

LHI 026

LATI 277
CAL ECHO
CAL STRIN
JMP DINPUT

LH1 001
JMP CFALSE

LLI 144
LHI 026
LMI 000
LLI146
LMI 000
LLI 205
LHI 027
LBM
INB
LMB
LLI 360
LHI 026
LDM
INL
LEM
LAB
RLC
RLC
ADI 134
LLA
LHI 027
LMD

17 225
17 226
17 227
17 231
17 233
17 236
17 237
17 240
17 243
17 245
17 247
17 252
17 254
17 256
17 257
17 260
17 262
17 263
17 265

17 266
17 270
17 273
17 276
17 300
17 303
17 305

17 310
17 312
17 315
17 320

17 323
17 325
17 326
17 327
17 331
17 332
17 334
17 335
17 336
17 340
17 341
17 344
17 347
17 351
17 353
17 354
17 356
17 361

060

374

066 325

056 001 wE
106 012 013

304

240

110 252 017

006 306

026 305

104 226 002

066 202

056 026 *¥
317

010

066 204

371

066 203

374

FORERR,

FOR1,

066 204
106 240 002
150 310 017
074 275
150 323 017
066 144
106 314 002

FORZ,

066 204

106 003 003
110 266 017
104 243 017

FOR3,

066 204
317

010

066 276

371

066 203
317

011

066 277

371

106 224 003
106 252 010
066 144
056 026 *x
307

074 001

110 246 031
066 146

FORA4,

12-45

INL

LME

LLI 325
LHI 001
CAL INSTR
LAE

NDA

JFZ FOR1
LAI 306
LCT 305
JMP ERROR
LLI 202
LHI 026
LBM

INB

LLI 204
LMB

LLI 2038
LME

LLI 204

CAL GETCHR
JTZ FOR3
CPI 275

JTZ FORA4
LLI144

CAL CONCT1

LLI 204

CAL LOOP
JFZ FOR2
JMP FORERR

LLI 204
LBM

INB

LLI 276
LMB

LLI 203
LBM

DCB

LLI 277
LMB

CAL EVAL
CAL RESTSY
LLI 144
LHI 026
LAM

CPI 001
JFZ FOR5
LLI 146

076 000
104 246 031

17 363
17 365

Note open addresses.
This space available

for patching.

20 000 066 126

20 002 056 001 ok
20 004 307

20 005 066 100

20 007 370
20 010 240

20 011 162 202 020
20 014 066 127
20 016 006 027

20020 317
20 021 010
20 022 011

20 023 160 051 020
20 026 221

20 027 160 366 012
20 032 320

20 033 066 126

20 035 016 003

20 037 106 211 022
20 042 021

20 043 110 033 020
20 046 104 175020
20 051 066 126

20 053 250
20 054 370
20 055 061
20 056 370
20 057 061
20 060 370
20 061 061
20 062 370
20 063 007

20 064 016 027

20 066 301

20 067 056 001 wok
20 071 066 127

20 073 240

20 074 150 100 020

20 077 371
20100 061
20 101 307
20102 066 100

12 - 46

FPFIX,

FPFIXL,

FPZERO,

FPFLT,

FPNORM,

NOEXCO,

LMI 000
JMP FOR5

LLI126

LHI 001
LAM
LLI100
LMA

NDA

CTS FPCOMP
LLI127

LATI 027
LBM

INB

DCB

JTS FPZERO
SUB

JTS FIXERR
LCA

LLI 126

LBI 003

CAL ROTATR
DCC

JFZ FPFIXL
JMP RESIGN
LLI126
XRA

LMA

DCL

LMA

DCL

LMA

DCL

LMA

RET

LBI 027

LAB

LHI 001

LLI 127

NDA

JTZ NOEXCO
LMB

DCL

LAM

LLI100

20 104
20105
20 106
20 111
20 113
20 115
20120
20122
20 124
20 125
20 126
20131
20132
20 133
20 136
20 140
20 141
20 142
20 143
20 145
20 147
20 152
20 153
20 154
20 157
20 160
20 161
20 162
20 163
20 166
20 170
20 172
20175
20 177
20 200
20 201
20 202
20 204
20 206

20 211
20 213
20 215
20 216
20 217
20 222
20 224
20 225
20 226
20 230
20 232

370

240
120120020
016 004
066 123
106 150 022
066 126
016 004
307

240
110143020
061

011
110124 020
066 127
250

370

007

066 123
016 004
106 177 022
307

240

160 166 020
060

317

011

371

104 143 020
066 126
016 003
106 211 022
066 100
307

240

023

066 124
016 003
104 150 022

066 126
056 001
307

240

110 235 020
066 124
335

346

066 134
016 004
104 013 021

%k

12 -47

ACZERT,

LOOKOo,

ACNONZ,

ACCSET,

RESIGN,

FPCOMP,

FPADD,

MOVOP,

LMA

NDA

JFS ACZERT
LBI 004
LLI123

CAL COMPLM
LLI 126

LBI 004

LAM

NDA

JFZ ACNONZ
DCL

DCB

JFZ LOOKO
LLI 127

XRA

LMA

RET

LLI123

LBI 004

CAL ROTATL
LAM

NDA

JTS ACCSET
INL

LBM

DCB

LMB

JMP ACNONZ
LLI126

LBI 003

CAL ROTATR
LLI100

LAM

NDA

RFS

LLI124

LBI 003

JMP COMPLM

LLI126

LHI 001
LAM

NDA

JFZ NONZAC
LLI124

LDH

LEL

LLI134

LBI 004

JMP MOVEIT

20 235
20 237
20 240
20 241
20 242
20 244
20 245
20 247
20 250
20 253
20 254
20 255
20 256
20 261
20 262
20 263
20 264
20 266
20 271
20 272
20 274
20 275
20 276
20 300
20 303
20 304
20 306
20 307
20 312
20 313
20 315
20 320
20 321
20 324
20 327
20 330
20 332
20 335
20 336
20 341
20 343
20 345
20 347
20 352
20 354
20 357
20 360
20 362
20 364
20 367
20 371

066 136
307

240

053

066 127

307

066 137

277

150 341 020
310

307

231

120 264 020
310

250

231

074 030

160 303 020
307

066 127

227

063

066 124
104 222 020
307

066 127
227

160 327 020
320

066 127
106 374 020
021

110 313 020
104 341 020
320

066 137

106 374 020
020

110 330 020
066 123

076 000
066 127

106 374 020
066 137

106 374 020
335

046 123
016 004

106 127 022
016 000

104 066 020

12-48

NONZAC,

CKEQEX,

SKPNEG,

LINEUP,

MORACC,

SHIFTO,

MOROP,

SHACOP,

LLI136

LAM

NDA

RTZ

LLI127

LAM

LLI137

CPM

JTZ SHACOP
LBA

LAM

SBB

JFS SKPNEG
LBA

XRA

SBB

CPI 030

JTS LINEUP
LAM

LLI127

SUM

RTS

LLI124

JMP MOVOP
LAM

LLI127

SUM

JTS SHIFTO
LCA

LLI 127

CAL SHLOOP
DCC

JFZ MORACC
JMP SHACOP
LCA

LLI137

CAL SHLOOP
INC

JFZ MOROP
LLI123

LMI 000

LLI 127

CAL SHLOOP
LLI137

CAL SHLOOP
LDH

LEI 123

LBI 004

CAL ADDER
LBI 000

JMP FPNORM

20 374
20 375
20 376
20 377
21 000
21 002
21 003
21 004
21 007
21 010
21013
21014
21015
21 020
21021
21 022
21 025
21 026
21 027

21 032
21 034
21 036
21 040
21 043

21 046
21 051
21 053
21 054
21 056
21 057
21 061
21 062
21 064
21 066
21 070
21072
21 075
21100
21 102
21 104
21 107
21111
21112
21113
21114
21 117
21121
21123
21126

317

010

371

061

016 004
307

240

120 211 022
022

104 212 022
307

060

106 356 022
370

060

106 356 022
011

053

104 013 021

066 124
056 001
016 003
106 150 022
104 211 020

106 166 021
066 137
307

066 127

207

004 001

370

066 102

076 027

066 126

016 003

106 211 022
142 270 021
066 146
016 006

106 211 022
066 102

327

021

372

110 066 021
066 146
016 006

106 211 022
066 143

*k

SHLOOP,

FSHIFT,

BRING1,

MOVEIT,

FSUB,

FPMULT,
ADDEXP,

SETMCT,

MULTIP,

12-49

LBM

INB

LMB

DCL

LBI 004

LAM

NDA
JFSROTATR
RAL

JMP ROTR
LAM

INL

CAL SWITCH
LMA

INL

CAL SWITCH
DCB

RTZ

JMP MOVEIT

LLI124

LHI 001

LBI 003

CAL COMPLM
JMP FPADD

CAL CKSIGN
LLI 137

LAM

LLI127

ADM

ADI 001

LMA

LLI 102

LMI 027

LLI 126

LBI 003

CAL ROTATR
CTC ADOPPP
LLI146

LBI 006

CAL ROTATR
LLI102

LCM

DCC

LMC

JFZ MULTIP
LLI146

LBI 006

CAL ROTATR
LLI 143

21130
21131
21132
21133
21136
21 140
21 141
21 142
21 144

21 146
21 151
21 153
21 156
21 160
21161
21 162
21 163
21 166
21170
21172
21174
21 175
21176
21 177
21 200
21 203
21 205
21 207
21 210
21 211
21212
21 215
21 217
21 221
21 223
21 224
21 225
21 230
21 232
21 233
21 234
21 235
21 237
21 240
21 241
21 242
21 244
21 246

21 251

307

022

240

162 302 021
066 123
346

335

066 143
016 004

106 013 021

016 000

106 066 020

066 101

307

240

013

104 202 020

066 140

056 001 o
016 010

250

370 CLRNEX,
060

011

110 175 021
016 004
066 130
370 CLRNX1,
060

011

110 207 021
066 101
076 001
066 126
307

240

160 251 021
066 136
307

240

023

066 101
327

021

372

066 134
016 003
104 150 022

EXMLDV,

CKSIGN,

CLROPL,

OPSGNT,

066 101 NEGFPA,

12 -50

LAM

RAL

NDA

CTS MROUND
LLI123

LEL

LDH

LLI 143

LBI 004

CAL MOVEIT
LBI 000

CAL FPNORM
LLI101

LAM

NDA

RFZ

JMP FPCOMP
LLI 140

LHI 001

LBI 010
XRA

LMA

INL

DCB

JFZ CLRNEX
LBI 004
LLI130
LMA

INL

DCB

JFZ CLRNX1
LLI101

LMI 001
LLI126
LAM

NDA

JTS NEGFPA
LLI 136
LAM

NDA

RFS

LLI101

LCM

DCC

LMC
LLI134

LBI 003

JMP COMPLM

LLI101

21 253
21 254
21 2565
21 256
21 260
21 262
21 265
21 270
21 272
21 273
21 275
21 277
21 302
21 304
21 306
21 307
21 310
21 311
21 313
21 314
21 315
21 320
21 321

21 322
21 325
21 327
21 330
21 331
21 334
21 336
21 337
21 341
21 342
21 344
21 345
21 347
21 351
21 354
21 357
21 361
21 363
21 365
21 370
21372
21 373
21 376
21 377
22 001
22003
22 006

327

021

372

066 124
016 003
106 150 022
104 230 021
046 141

335

066 131
016 006
104 127 022
016 003
006 100
207

370

060

006 000
217

011

110 307 021
370

007

106 166 021
066 126
307

240

150 357 012
066 137

307

066 127
2217

004 001

370

066 102
076 027
106 101 022
160 376 021
046 134
066 131

016 003
106 013 021
006 001
032

104 377 021
250

066 144
016 003
106 200 022
066 134

ADOPPP,

MROUND,

CROUND,

FPDIV,

SUBEXP,

SETDCT,

DIVIDE,

NOGO,
QUOROT,

12-51

LCM

DCC

LMC
LLI124

LBI 003
CAL COMPLM
JMP OPSGNT
LEI 141

LDH

LLI131

LBI 006

JMP ADDER
LBI 003

LAI 100
ADM

LMA

INL

LAI 000
ACM

DCB

JFZ CROUND
LMA

RET

CAL CKSIGN
LLI126

LAM

NDA

JTZ DVERR
LLI 137

LAM

LLI127

SUM

ADI 001
LMA

LLI 102

LMI 027

CAL SETSUB
JTS NOGO
LEI 134
LLI131

LBI 003

CAL MOVEIT
LAI 001
RAR

JMP QUOROT
XRA

LLI 144

LBI 003

CAL ROTL
LLI 134

22 010
22 012
22 015
22 017
22 020
22 021
22 022
22 025
22 030
22 033
22035
22 036
22 040
22 041
22 043
22 044
22 045
22 046
22 050
22051
22 052
22 053
22 056
22 060
22 063
22 065
22 066
22 067
22 070
22072
22074
22076
22101
22103
22104
22 106
22110
22113
22115
22 117
22121
22124
22125
22126

22127
22 130
22 131
22134
22135
22 136

016 003
106 177 022
066 102

327

021

372

110 351 021
106 101 022
160 070 022
066 144
307

004 001
370

006 000
060

217

370

006 000
060

217

370

120 070 022
016 003
106 211 022
066 127
317

010

371

066 144
046 124
016 003
104 146 021
046 131
335

066 124
016 003
106 013 021
046 131
066 134
016 003
106 223 022
207

240

007

240
307
106 356 022
217
370
011

DVEXIT,

SETSUB,

ADDER,
ADDMOR,

12- 52

LBI 003

CAL ROTATL
LLI102

LCM

DCC

LMC

JFZ DIVIDE
CAL SETSUB
JTS DVEXIT
LLI 144

LAM

ADI 001
LMA

LAI 000

INL

ACM

LMA

LAI 000

INL

ACM

LMA

JFS DVEXIT
LBI1 003

CAL ROTATR
LLI 127

LBM

INB

LMB

LLI 144

LEI 124

LBI 003

JMP EXMLDV
LEI 131

LDH

LLI124

LBI 003

CAL MOVEIT
LEI 131

LLI 134

LBI 003

CAL SUBBER
LAM

NDA

RET

NDA
LAM
CAL SWITCH
ACM
LMA
DCB

22137
22 140
22 141
22 144
22145

22150
22 151
22 153
22 155
22 156
22 157
22 160
22161
22162
22163
22164
22 166
22 167
22170
22171
22173
22 174

22177
22 200
22 201
22 202
22 203
22 204
22 205
22 206

22 211
22 212
22 213
22 214
22 215
22 216
22 217
22 220

22 223
22 224
22 225
22 230
22 231
22 232
22 233
22 234
22 235

053
060
106 356 022
060
104 130 022

307

054 377
004 001
370

032
330

011

053

060

307

054 377
340
303

022
006 000
214
104 155 022

240
307
022
370
011
053
060
104 200 022

240
307
032
370
011
053
061
104 212 022

240
307
106 356 022
237
370
011
053
060
106 356 022

12-53

COMPLM,

MORCOM,

ROTATL,

ROTL,

ROTATR,
ROTR,

SUBBER,
SUBTRA,

RTZ

INL

CAL SWITCH
INL

JMP ADDMOR

LAM
XRI 377
ADI 001
LMA
RAR
LDA
DCB
RTZ
INL
LAM
XRI 377
LEA
LAD
RAL
LAI00C
ACE
JMP MORCOM

NDA

LAM

RAL

LMA

DCB

RTZ

INL

JMP ROTL

NDA
LAM
RAR
LMA
DCB
RTZ
DCL
JMP ROTR

NDA

LAM

CAL SWITCH
SBM

LMA

DCB

RTZ

INL

CAL SWITCH

22 240
22 241

22 244
22 246
22 250
22 252

22 255
22 256
22 257
22 261
22 263

22 266
22 270
22 272
22 274

22 277
22 302
22 304
22 306
22 311
22 314

22 317
22 320
22 321
22 323
22 325
22 326
22 327
22 330
22 331
22 332
22 333
22 334
22 335
22 336

22 337
22 341
22 343
22 344
22 345
22 346
22 347
22 350
22 351
22 352

060
104 224 022

036 001
046 124
016 004
104 013 021

346

335

066 124
056 001
104 272 022

036 001
046 134
016 004
104 013 021

106 317 022
066 124
056 001
106 266 022
106 337 022
104 244 022

305
316
066 200
056 001
370
060
371
060
373
060
374
350
361
007

066 200
056 001
307
060
317
060
337
060
347
350

EX3

%k

%k

Kk

k%

* %

12- 54

FLOAD,

FSTORE,

OPLOAD,

SETIT,

FACXOP,

SAVEHL,

RESTHL,

INL
JMP SUBTRA

LDI 001
LEI 124
LBI 004
JMP MOVEIT

LEL

LDH
LLI124
LHI 001
JMP SETIT

LDI 001
LEI 134
LBI 004
JMP MOVEIT

CAL SAVEHL
LLI124

LHI 001

CAL OPLOAD
CAL RESTHL
JMP FLOAD

LAH
LBL
LLI 200
LHI 001
LMA
INL
LMB
INL
LMD
INL
LME
LHA
LLB
RET

LLI 200
LHI 001
LAM
INL
LBM
INL
LDM
INL
LEM
LHA

22 353
22 354
22 355

22 356
22 357
22 360
22 361
22 362
22 363
22 364

22 365
22 367
22 371
22 372
22 373
22 374
22 377
23 000
23 001
23 002
23 003
23 006

23010
23 012
23 014
23 015
23 016
23 017
23 020
23 021
23 024
23 025
23 026
23 030
23031
23 033
23 035

23 036
23 037
23 040
23 041
23 042
23 043

23 044
23 045
23 046

361
307
007

325 SWITCH,
353
332
326
364
342
007

056 001 H*
066 220
327

020

021

110 010 023
364

353

327

020

106 036 023
076 000

GETINP,

066 220

056 001 ok
327

620

372

364

353

106 036 023

307

240

056 001 #*
013

066 220

076 000

007

NOTO,

306 INDEXC,
202
360
003
050
007

346 DINPUT,

335
056 001 Hk

12 -55

LLB
LAM
RET

LCH
LHD
LDC
LCL
LLE
LEC
RET

LHI 001
LLI 220
LCM

INC

DCC

JFZ NOTO
LLE

LHD

LCM

INC

CAL INDEXC
LMI 000

LLI 220
LHI 001
LCM
INC
LMC
LLE
LHD
CAL INDEXC
LAM
NDA
LHI 001
RFZ
LLI 220
LMI 000
RET

LAL
ADC
LLA
RFC
INH

RET

LEL
LDH
LHI 001

23 050
23 052
23 053
23 055
23 056
23 057
23 060
23 063
23 065
23 067
23070
23071
23 072
23075
23100
23 102
23 105
23 107
23112
23114

23115

23120
23122
23125
23127
23132
23134
23137
23 140
23 143
23 145
23 150
23152
23 155
23 157
23 160
23162
23 163
23 166
23 170
23171
23172
23173
23176

23 201
23 202
23 204
23 205

066 150
250

016 010
370

060

011

110 055 023
066 103
016 004
370

060

011

110 067 023
106 365 022
074 253
150 115023
074 255
110120 023
066 103
370

106 365 022

074 256
150 201 023
074 305
150 221 023
074 240
150 115 023
240

150 311 023
074 260
160 375 012
074 272
120 375012
066 156
320

006 370
247

110 115 023
066 105

317

010

371

106 056 024
104 115 023

310
066 106
307
240

CLRNX2,

CLRNX3,

NINPUT,

NOTPLM,

PERIOD,

12-56

LLI150
XRA

LBI 010
LMA

INL

DCB

JFZ CLRNX2
LLI103

LBI 004
LMA

INL

DCB

JFZ CLRNX3
CAL GETINP
CPI 253

JTZ NINPUT
CPI 255

JFZ NOTPLM
LLI103
LMA

CAL GETINP

CPI 256

JTZ PERIOD
CPI 305

JTZ FNDEXP
CPI 240

JTZ NINPUT
NDA

JTZ ENDINP
CPI 260

JTS NUMERR
CPI 272

JFS NUMERR
LLI 156

LCA

LAI 370
NDM

JFZ NINPUT
LLI105

LBM

INB

LMB

CAL DECBIN
JMP NINPUT

LBA
LLI106
LAM
NDA

23 206
23 211
23 213
23 214
23 215
23 216

23 221
23 224
23 226
23 231
23 233
23 236
23 240

23 241

23 244
23 245
23 250
23 252
23 255
23 257
23 262
23 264
23 265
23 267
23 271
23 272
23 275
23 276
23 277
23 300
23 301
23 302
23 303
23 304
23 305
23 306

23 311
23 313
23 314
23 315
23 320
23 322
23 324

23 327
23 331
23 332

110 375 012
066 105
370

060

371

104 115 023

106 365 022
074 253
150 241 023
074 255
110 244 023
066 104
370

FNDEXP,

106 365 022 EXPINP,
240 NOEXPS,
150 311 023
074 260

160 375 012
074 272
120 375012
044 017
310

066 157
006 003

277

160 375 012
327

307

240

022

022

202

022

201

370

104 241 023

066 103
307

240

150 327 023
066 154
016 003
106 150 022

ENDINP,

066 153
250
370

FININP,

12-57

JFZ NUMERR
LLI105

LMA

INL

LMB

JMP NINPUT

CAL GETINP
CPI 253

JTZ EXPINP
CPI 255

JFZ NOEXPS
LLI 104
LMA

CAL GETINP

NDA

JTZ ENDINP
CPI 260

JTS NUMERR
CPI 272

JFS NUMERR
NDI 017

LBA

LLI 157

LAI 003

CPM

JTS NUMERR
LCM

LAM

NDA

RAL

RAL

ADC

RAL

ADB

LMA

JMP EXPINP

LLI103

LAM

NDA

JTZ FININP
LLI154

LBI 003

CAL COMPLM

LLI 153
XRA
LMA

23 333
23 334
23 336
23 340
23 343
23 346
23 350
23 351
23 352
23 354
23 357
23 360
23 362
23 364

23 365
23 367
23 370
23 371
23 374
23 376
23 377

24 000
24 002
24 003
24 004
24 007

24 010
24 012
24 014
24 017
24 022
24 024
24 025
24 026
24 027
24 032

24 033
24 035
24 037
24 042
24 045
24 047
24 050
24 051
24 052
24 055

335

046 123
016 004
106 013 021
106 064 020
066 104
307

240

066 157
150 365 023
307

054 377
004 001
370

066 106

307

240

150 000 024
066 105
250

2217

066 157

207

370

160 033 024
053

066 210
056 001
106 277 022
106 046 021
066 157
327

021

372

110 010 024
007

066 214
056 001
106 277 022
106 046 021
066 157
317

010

371

110 033 024
007

POSEXP,

EXPOK,

FpX1o0,
*k

MINEXP, FPD10,
PES

12-58

LDH

LEI 123

LBI 004
CAL MOVEIT
CAL FPFLT
LLI104
LAM

NDA

LLI 157

JTZ POSEXP
LAM

XRI 377
ADI 001
LMA

LLI 106
LAM

NDA

JTZ EXPOK
LLI105
XRA

SUM

LLI 157
ADM

LMA

JTS MINEXP
RTZ

LLI 210

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LCM

DCC

LMC

JFZ FPX10
RET

LLI 214

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LBM

INB

LMB

JFZ FPD10
RET

24 056
24 061
24 063
24 064
24 066
24 067
24 071
24 073
24 074
24 076
24 101
24103
24 105
24110
24112
24114
24 117
24121
24123
24125
24130
24132
24 134
24 137
24 141
24 142
24 143
24 144
24 145
24 147
24 150
24 152
24 153
24 155
24 157
24 162

24 165
24 167
24171
24 173
24 175
24176
24 177
24 202
24 204

24 207
24 211
24 213
24 216

106 317 022
066 153
302

044 017
370

046 150
066 154
335

016 003
106 013 021
066 154
016 003
106 177 022
066 154
016 003
106 177 022
046 154
066 150
016 003
106 127 022
066 154
016 003
106 177 022
066 152
250

370

061

370

066 153
307

066 150
370

046 154
016 003
106 127 022
104 337 022

056 001

066 157

076 000
066 126
307

240

160 207 024
006 240
104 220 024

066 124
016 003
106 150 022
006 255

DECBIN,

*k FPOUT,

OUTNEG,

12-59

CAL SAVEHL
LLI 153

LAC

NDI 017
LMA

LEI 150
LLI154

LDH

LBI 003

CAL MOVEIT
LLI154

LBI 003

CAL ROTATL
LLI154

LBI 003

CAL ROTATL
LEI 154
LLI150

LBI 003

CAL ADDER
LLI154

LBI 003

CAL ROTATL
LLI152

XRA

LMA

DCL

LMA

LLI153

LAM

LLI150

LMA

LEI 154

LBI 003

CAL ADDER
JMP RESTHL

LHI 001

LLI 157

LMI 000
LLI126

LAM

NDA

JTS OUTNEG
LAI 240

JMP AHEAD1

LLI124
LBI 003
CAL COMPLM
LAT 255

24 220
24 223
24 225
24 226
24 227
24 232
24 234
24 236
24 237
24 240
24 241
24 244
24 245
24 250

24 253
24 255
24 257
24 261
24 264
24 266

24 271
24 273
24 275
24 276

24 277
24 302
24 304
24 305
24 310
24 312
24 314
24 317
24 322
24 324
24 325
24 326

24 327
24 331
24 332
24 333

24 336
24 340
24 342
24 345
24 350
24 352

106 202 003
066 110
307

240

150 253 024
066 127
006 027
317

010

011

160 253 024
221

160 253 024
104 271 024

066 110
076 000
006 260
106 202 003
006 256
106 202 003

066 127
006 377
207
370

120 336 024
006 004

207

120 360 024
066 210
056 001

106 277 022
106 046 021
066 157

327

021

372

066 127

307

240

104 277 024

066 214
056 001
106 277 022
106 046 021
066 157
317

skt

ek

12-60

AHEADI,

OUTFLT,

OUTFIX,

DECEXT,

DECREP,

DECEXD,

CAL ECHO
LLI110
LAM

NDA

JTZ OUTFLT
LLI 127

LAT 027
LBM

INB

DCB
JTSOUTFLT
SUB
JTSOUTFLT
JMP OUTFIX

LLI110
LMI 000
LAI 260
CAL ECHO
LAI 256
CAL ECHO

LLI 127
LAI 377
ADM
LMA

JFS DECEXD
LAI 004

ADM

JFS DECOUT
LLI210

LHI 001

CAL FACXOP
CAL FPMULT
LLI157

LCM

DCC

LMC

LLI127

LAM

NDA

JMP DECEXT

LLI 214

LHI 001

CAL FACXOP
CAL FPMULT
LLI 157

LBM

24 353
24 354
24 355

24 360
24 362
24 363
24 365
24 367
24 372
24 374
24 376
25 000
25 002
25 005

25 0106
25 012
25013
25014
25015
25020
25 022
25 024
25027
25032
25034
25 036
25 040
25 041
25042

25 045
25 047
25 050
25 051
25054
25 056
25 057
25 060
25 063
25 065
25 066
25 067
25070
25073
25 075
25 076
25 100
25103

010
371
104 327 024

046 164
335

066 124
016 003

106 013 021
066 167

076 000
066 164
016 003
106 177 022
106 223 025

066 127

317

016

371

150 032 025
066 167
016 004
106 211 022
104 010 025
066 107

076 007
066 167

307

240

150 165 025

066 167
307

240

110 105 025
066 110
307

240

150 104 025
066 157
327

021

020

120 104 025
066 166
307

044 346
110 104 025
007

DECOUT,

COMPEN,

OUTDIG,

OUTDGS,

12-61

INB
LMB
JMP DECREP

LEI 164

LDH

LLI124

LBI 003

CAL MOVEIT
LLI 167

LMI 000

LLI 164

LBI1 003

CAL ROTATL
CAL OUTX10

LLI127

LBM

INB

LMEB

JTZ OUTDIG
LLI 167

LBI 004

CAL ROTATR
JMP COMPEN
LLI 107

LMI 007

LLI 167

LAM

NDA

JTZ ZERODG

LLI167

LAM

NDA

JFZ OUTDGX
LLI 116

LAM

NDA

JTZ OUTZER
LLI15%

LCM

DCC

INC

JFS OUTZER
LLI166

LAM

NDI 340

JFZ OUTZER
RET

25 104

25 105
25107

25112
25114
25115
25116

25121
25123
25124
25125
25126
25131
25134

25137
25141
25142
25 143
25144
25 147
25151
25 154
25 156
25 157
25160
25161
25162

25165
25 167
25170
25171
25172
25174
25175
25176
25 201
25 202
25 203
25 204
25 207
25 210
25 211
25212
25 215
25 217
25 220

250

004 260
106 202 003

066 110

307

240

110 137 025

066 107

327

021

372

150 300 025
106 223 025
104 045 025

066 157

327

021

372

110 154 025
006 256
106 202 003
066 107

327

021

372

053

104 131 025

066 157

3217

021

372

066 166
307

240
110112 025
061

307

240

110112 025
061

307

240

110112 025
066 157

370

104 112 025

OUTZER,

OUTDGX,

DECRDG,

PUSHIT,

CKDECP,

NODECP,

ZERODG,

12 - 62

XRA

ADI 260
CAL ECHO

LLI110

LAM

NDA

JFZ CKDECP

LLI107

LCM

DCC

LMC

JTZ EXPOUT
CAL OUTX10
JMP OUTDGS

LLI 157
LCM

DCC

LMC

JFZ NODECP
LAT 256
CAL ECHO
LLI 107
LCM

DCC

LMC

RTZ

JMP PUSHIT

LLI 157

LCM

DCC

LMC

LLI166

LAM

NDA

JFZ DECRDG
DCL

LAM

NDA

JFZ DECRDG
DCL

LAM

NDA

JFZ DECRDG
LLI157

LMA

JMP DECRDG

25 223
25 225
25 227
25231
25 232
25 234
25 236
25 241
25 243
25 245
25 250
25 252
25 254
25 257
25 261
25 263
25 265
25 270
25 272
25 274
25 277

25 300
25 302
25 303
25 304
25 305
25 307
25 312
25 313
25 314
25 317
25 321

25 324
25 326
25 330
25 331

25 333
25 336
25 340

25 341
25 343
25 346
25 347
25 350

25 353
25 355

066 167

076 000

066 164
335

046 160

016 004

106 013 021
066 164
016 004

106 177 022
066 164
016 004

106 177 022
066 160
046 164
016 004
106 127 022
066 164
016 004
106 177 022
007

066 157

307

240

053

006 305

106 202 003
307

240

160 324 025
006 253
104 333 025

054 377
004 001
370

006 255

106 202 003
016 000
307

024 012
160 353 025
370

010

104 341 025

006 260
201

12-63

OUTX10,

EXPOUT,

EXOUTN,

AHEAD?2,

SUB12,

TOMUCH,

LLI167

LMI 000

LLI 164

LDH

LEI 160

LBI 004

CAL MOVEIT
LLI 164

LBI 004

CAL ROTATL
LLI 164

LBI 004

CAL ROTATL
LLI 160

LEI 164

LBI 004

CAL ADDER
LLI 164

LBI 004

CAL ROTATL
RET

LLI 157

LAM

NDA

RTZ

LAI 305

CAL ECHO
LAM

NDA

JTS EXOUTN
LAI 253

JMP AHEAD2

XRI 377
ADI 001
LMA

LAI 255

CAL ECHO
LBI 000
LAM

SUT 012

JTS TOMUCH
LMA

INB

JMP SUB12

LAI 260
ADB

25 356
25 361
25 362
25 364
25 367

106 202 003
307

004 260
106 202 003
007

Note open addresses.
This space available

for patching.

26 000
26 001

26 117
26 120

26 143
26 144

26 175
26 176
26 177
26 200
26 201
26 202
26 203
26 204
26 205
26 206
26 207
26 210
26 211

26 227
26 230
26 231

26 237

000
XXX

XXX
000

000
000

000
000
000
000
000
000
000
000
000
000
000
000
XXX

XXX
000
XXX

XXX

CAL ECHO
LAM

ADI 260
CAL ECHO
RET

NOTE: Pages 26 and 27 in memory are used for
temporary data registers, pointers, counters and
look-up tables. The following data should be
placed on those pages. An entry marked XXX
indicates the initial contents of the location are
irrelevant to the program’s operation.

12-64

(cc) for INPUT LINE BUFF
These locations used as the
INPUT LINE BUFFER
storage

area

These locations used as the
SYMBOL BUFFER

storage

area

These locations used as the
AUXILIARY

SYMBOL BUFFER

storage area

TEMP SCAN storage register
TAB FLAG

EVAL CURRENT temp. reg.
SYNTAX LINE NUMBER
SCAN temporary register
STATEMENT TOKEN
Temporary working register
Temporary working register
ARRAY pointer

ARRAY pointer
OPERATOR STACK pointer
These locations used as the
OPERATOR STACK

storage

area

FUN/ARRAY STACK pointer
These locations used as the
FUNCTION/ARRAY STACK
storage

area

26 240
26 241
26 242
26 243
26 244
26 245
26 246
26 247
26 250
26 251
26 252
26 253
26 254
26 255
26 256

26 257
26 260
26 261
26 262
26 263
26 264
26 265
26 266
26 267
26 270
26 271
26 272
26 273
26 274
26 275

26 276
26 277

26<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>